3,136 research outputs found

    Betalains in some species of the amaranthaceae family: A review

    Get PDF
    Natural pigments are largely distributed in the plant kingdom. They belong to diverse groups, with distinct biochemical pathways. Betalains with colours that range from yellow to red-violet can de divided into two main subgroups: betaxanthins and betacyanins. These types of pigments are confined into 13 families of the order Caryophyllales and in some genera of higher fungi (Amanita muscaria, Hygrocybe and Hygrophorus). The Amaranthaceae family includes diverse genera in which betalains are present: Alternanthera, Amaranthus, Beta, Chenopodium, Celosia and Gomphrena. The biosynthesis of betalains and their general biological properties were reviwed in the present work. In addition, the types of betalains present in some species of the aforementioned genera, their stability and production, as well as biological attributes, were reviewed.Portuguese National Funding Agency for Science, Research and Technology (Fundacao para a Ciencia e a Tecnologia-FCT; Portugal) [UID/BIA/04325/2013-MeditBio

    Optimizing a Simple Natural Dye Production Method for Dye-Sensitized Solar Cells: Examples for Betalain (Bougainvillea and Beetroot Extracts) and Anthocyanin Dyes

    Get PDF
    We present a study about the sensitizers extracted from natural resources. This paper focuses on how to select, extract and characterize natural dyes, giving some guides to establish a protocol for the whole process of fabricating and using these dyes. The influence of the extraction solvent and method, and of parameters such as pH are analyzed. Also, dye precursor and dye extract stability have been studied, as well as how the dye adsorbs onto substrates and the effect of mixing or concentrating the extracts. Results concerning betalain pigments present in bougainvillea and beetroot extracts, and anthocyanins in eggplant extracts, analyzed by using UV-Vis spectrometry, are included. As an example of application, we report procedures intended to test and enhance the dye potential as a main component of dye-sensitized solar cells (DSSCs). DSSCs mimic nature’s photosynthesis and have some advantages like an easy and low-cost fabrication procedure. Their efficiency depends on its design and fabrication process and also on the different components involved. Hence, optimizing each component is essential to achieve the best performance, and thus the dye used as a sensitizer is crucial. We fabricate cells by using a simple procedure: As the interest is focused on the sensitizer, the same consecutive steps are followed, varying only the dye extract. Among all the natural-dyes tested, beetroot extract reaches up to 0.47% cell efficiency, which is near the highest values found in literature for this pigment

    The contents of risk elements, arsenic speciation, and possible interactions of elements and betalains in beetroot (Beta vulgaris, L.) growing in contaminated soil

    Get PDF
    The effect of enhanced soil risk element contents on the uptake of As, Cd, Pb, and Zn was determined in two pot experiments. Simultaneously, transformation of arsenic and its compounds in beetroot (Beta vulgaris L.) plants was investigated. The mobile fractions of elements were determined in 0.05 mol L−1 (NH4)2SO4 extracts and did not exceed 2% of total soil arsenic, 9% of total cadmium, 3% of total lead, and 8% of total zinc, respectively. Although the soils were extremely contaminated the mobile portions of the elements represented only a small fragment of the total element content. Arsenic contents in beet plants reached up to 25 mg As kg−1 in roots and 48 mg As kg−1 in leaves in the soil characterized by the highest mobile arsenic portion. Arsenic portions extractable with water and phosphate buffer from the beetroot samples did not show significant differences between the extraction agents but the extractability was affected by the arsenic concentration. Arsenic was almost quantitatively extractable from the samples with the lowest total arsenic concentration, whereas in the samples with the highest total arsenic concentration less than 25% was extractable. Arsenate was the dominant arsenic compound in the extracts (70% in phosphate buffer, 50% in water extracts). A small portion of dimethylarsinic acid, not exceeding 0.5%, was detected only in the sample growing in the soil with the highest arsenic concentration. The role of betalains (betanin, isobetanin, vulgaxanthin I and vulgaxanthin II) in transformation/detoxification of arsenic in plants was not confirmed in this experiment because the plants were able to grow in the contaminated soil without any symptoms of arsenic toxicity

    Betalains and phenolic compounds of leaves and stems of Alternanthera brasiliana and Alternanthera tenella

    Get PDF
    Betacyanins and phenolic compounds from acetonitrile:acidified water extracts of Alternanthera brasiliana and Alternanthera tenella were characterized and quantified using a high-performance liquid chromatography system coupled with diode array and electrospray mass spectrometry detection. Four betacyanins (amaranthine, isoamaranthine, betanin and isobetanin) were tentatively identified and quantified. Twenty eight phenolic compounds of four different families (hydroxybenzoic and hydroxycinnamic acids, flavones and flavonols) were separated and characterized on the basis of their accurate MS and MS/MS information out of which ten compounds were confirmed by authentic standards. These plant species could be considered as an especially rich source of natural bioactive compounds and potential food colorants. A. brasiliana showed the highest betacyanin and polyphenols content (89 μg/g and 35,243 μg/g, respectively). Among polyphenols, flavonols were the more abundant (kaempferol-glucoside, kaempferol-rutinoside and kaempferol-rhamnosyl-rhamnosyl-glycoside). Meanwhile, A. tenella showed a different polyphenols profile with flavones as major compounds (glucopyranosil-vitexin and vitexin). As a novelty, pentosyl-vitexin and pentosyl-isovitexin were detected for the first time in Alternanthera plants. Both A. brasiliana and A. tenella leaves showed high total polyphenol content and in vitro antioxidant activity (FRAP). These results provide an analytical base concerning the phenolic and betalains composition and the antioxidant properties of two members of the promising Alternanthera gender, for subsequent applications, such as functional food ingredients.Fil: Deladino, Lorena. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Alvarez, I.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: De Ancos, B.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Sánchez Moreno, C.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Molina García, A. D.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Schneider Teixeira, Aline. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; Españ

    Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans

    Get PDF
    ABSTRACT Background: Betalains were recently identified as natural antioxidants. However, little is known about their bioavailability from dietary sources. Objective: The objective was to evaluate the bioavailability of betalains from dietary sources. Design: The plasma kinetics and urinary excretion of betalains were studied in healthy volunteers (n 8) after a single ingestion of 500 g cactus pear fruit pulp, which provided 28 and 16 mg indicaxanthin and betanin, respectively. The incorporation of betalains inLDLand the resistance of the particles to ex vivo–induced oxidation was also researched. Results: Betanin and indicaxanthin reached their maximum plasma concentrations 3 h after the fruit meal and declined according to first-order kinetics. The half-life of betanin (0.94 0.07 h) was shorter than that of indicaxanthin (2.36 0.17 h). Both compounds had disappeared from plasma by 12 h after intake. The urinary excretion of indicaxanthin and betanin over 12 h represented 76 3.0% and 3.7 0.2%, respectively, of the ingested compounds. LDL isolated 3 and 5 h after the fruit meal incorporated betalains at concentrations of 100.5 11and50 7.2pmol/mgLDLprotein, respectively. In addition, the particles appeared more resistant to ex vivo–induced oxidative injury than did the samples isolated before fruit ingestion (P 0.05)—the higher the amount of betalains incorporated, the higher the resistance. The concentrations of vitamin E and -carotene in LDL did not change significantly after fruit ingestion. Conclusion: Our results show that cactus pear fruit is a source of bioavailable betalains and suggest that indicaxanthin and betanin may be involved in the observed protection of LDL against ex vivo– induced oxidative modifications

    Use of time-resolved fluorescence to monitor bioactive compounds in plant based foodstuffs

    Get PDF
    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein

    The effect of soil risk element contamination level on the element contents in Ocimum basilicum L.

    Get PDF
    Red basil (Ocimum basilicum L.) cv. Red Rubin was cultivated in model pot experiment in the soil amended by arsenic, cadmium and lead solutions in stepwise concentrations representing the soil concentration levels of former mining area in the vicinity of Příbram, Czech Republic. The element levels added to the soil reached up to 40 mg Cd, 100 mg As, and 2000 mg Pb per kg of soil. Moreover, essential macro-and microelements as well as cyanidine contents were investigated to assess their potential interactions with the risk elements. The extractable element portions in soils determined at the end of vegetation period differed according to the individual elements. Whereas the plant-available (extractable with 0.11M CH3COOH) content of Cd represented 70-100% of the added Cd, the mobile portion of Pb did not exceed 1%. The risk element content in plants reflected the increasing element contents in soil. The dominant element portions remained in plant roots indicating the limited translocation ability of risk elements to the aboveground biomass of this plant species. Although the risk element contents in amended plants significantly increased, no visible symptoms of phytotoxicity occurred. However, the effect of enhanced risk element contents on the essential element uptake was assessed. Considering inter-element relationships, elevated sulphur levels were seen in amended plants, indicating its possible role of phytochelatin synthesis in the plants. Moreover, the molybdenum contents in plant biomass dropped down with increasing risk element uptake by plants confirming As-Mo and Cd-Mo antagonism. The increasing content of cyanidine in the plant biomass confirmed possible role of anthocyanins in detoxification mechanism of risk element contaminated plants and suggested the importance of anthocyanin pigments for risk element tolerance of plants growing in contaminated areas

    Antioxidant Betalains from Cactus Pear (Opuntia Ficus Indica) inhibit endothelial ICAM-1 expression

    Get PDF
    It has been suggested that some pigments would have antioxidant properties and that their presence in dietary constituents would contribute to reduce the risk of oxidative stress\u2013correlated diseases. Among others, inflammatory response depends on redox status and may implicate oxidative stress. Vascular endothelial cells are a direct target of oxidative stress in inflammation. We have tested the impact of the free radical scavenger and antioxidant properties of betalains from the prickle pear in an in vitro model of endothelial cells. Here we show the capacity of betalains to protect endothelium from cytokine- induced redox state alteration, through ICAM-1 inhibition. KEYWORDS: endothelial cells; ICAM-1; betalains; antiinflammatory drug

    Evaluation of the antioxidant capacity of betalainic fruits and vegetables

    Get PDF
    The present investigation determined total phenolics, ascorbic acid, betalain contents and the corresponding antioxidant capacities of betalain-bearing fruits and vegetables. In addition to differently coloured Swiss chard petioles (Beta vulgaris L. ssp. cicla [L.] Alef. cv. ‘Bright Lights’) and hypocotyls of white, yellow, and red beetroot varieties (Beta vulgaris L. ssp. vulgaris, cv. ‘Albina Vereduna’, cv. ‘Burpee’s Golden’, and cv. ‘Rote Kugel 2’), juices from cactus pears (Opuntia ficus-indica [L.] Mill. cv. ‘Gialla’ and cv. ‘Rossa’) and pitaya fruits (Hylocereus polyrhizus [Weber] Britton & Rose, H. undatus [Haworth] Britton & Rose, Selenicereus megalanthus [K. Schumann ex Vaupel] Moran) were included in this study. Antioxidant capacities were determined by application of the TEAC and FRAP assays, respectively, resulting in differing rankings of the commodities investigated. In both test systems, highest antioxidant capacity was shown for red beetroot extract while for the remaining samples no straightforward order could be established
    corecore