103,621 research outputs found

    Reliable SPICE Simulations of Memristors, Memcapacitors and Meminductors

    Get PDF
    Memory circuit elements, namely memristive, memcapacitive and meminductive systems, are gaining considerable attention due to their ubiquity and use in diverse areas of science and technology. Their modeling within the most widely used environment, SPICE, is thus critical to make substantial progress in the design and analysis of complex circuits. Here, we present a collection of models of different memory circuit elements and provide a methodology for their accurate and reliable modeling in the SPICE environment. We also provide codes of these models written in the most popular SPICE versions (PSpice, LTspice, HSPICE) for the benefit of the reader. We expect this to be of great value to the growing community of scientists interested in the wide range of applications of memory circuit elements

    Fission Cycling in Supernova Nucleosynthesis: Active-Sterile Neutrino Oscillations

    Full text link
    We investigate nucleosynthesis in the supernovae post-core bounce neutrino-driven wind environment in the presence of active-sterile neutrino transformation. We consider active-sterile neutrino oscillations for a range of mixing parameters: vacuum mass-squared differences of 0.1 eV^2 < dm^2 < 100 eV^2, and vacuum mixing angles of sin^2(2 theta_v) > 10^-4. We find a consistent r-process pattern for a large range of mixing parameters that is in rough agreement with the halo star CS 22892-052 abundances and the pattern shape is determined by fission cycling. We find that the allowed region for the formation of the r-process peaks overlaps the LSND and NSBL (3+1) allowed region.Comment: 11 pages, 7 figures, Corrected Typo

    Nonlinear gyrofluid computation of edge localised ideal ballooning modes

    Full text link
    Three dimensional electromagnetic gyrofluid simulations of the ideal ballooning mode blowout scenario for tokamak edge localized modes (ELMs) are presented. Special emphasis is placed on energetic diagnosis, examining changes in the growth rate in the linear, overshoot, and decay phases. The saturation process is energy transfer to self generated edge turbulence which exhibits an ion temperature gradient (ITG) mode structure. Convergence in the decay phase is found only if the spectrum reaches the ion gyroradius. The equilibrium is a self consistent background whose evolution is taken into account. Approximately two thirds of the total energy in the edge layer is liberated in the blowout. Parameter dependence with respect to plasma pressure and the ion gyroradius is studied. Despite the violent nature of the short-lived process, the transition to nonlinearity is very similar to that found in generic tokamak edge turbulence.Comment: The following article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org

    Evolution of the CKM Matrix in the Universal Extra Dimension Model

    Full text link
    The evolution of the Cabibbo-Kobayashi-Maskawa matrix and the quark Yukawa couplings is performed for the one-loop renormalization group equations in the universal extra dimension model. It is found that the evolution of mixing angles and the CP violation measure J may rapidly vary in the presence of the Kaluza-Klein modes, and this variation becomes dramatic as the energy approaches the unification scale.Comment: 10 pages, 4 figure

    Three-beam instability in the LHC

    Full text link
    In the LHC, a transverse instability is regularly observed at 4TeV right after the beta-squeeze, when the beams are separated by about their ten transverse rms sizes [1-3], and only one of the two beams is seen as oscillating. So far only a single hypothesis is consistent with all the observations and basic concepts, one about a third beam - an electron cloud, generated by the two proton beams in the high-beta areas of the interaction regions.Comment: 7 pages, 3 figure

    Modeling the Pollution of Pristine Gas in the Early Universe

    Get PDF
    We conduct a comprehensive theoretical and numerical investigation of the pollution of pristine gas in turbulent flows, designed to provide new tools for modeling the evolution of the first generation of stars. The properties of such Population III (Pop III) stars are thought to be very different than later generations, because cooling is dramatically different in gas with a metallicity below a critical value Z_c, which lies between ~10^-6 and 10^-3 solar value. Z_c is much smaller than the typical average metallicity, , and thus the mixing efficiency of the pristine gas in the interstellar medium plays a crucial role in the transition from Pop III to normal star formation. The small critical value, Z_c, corresponds to the far left tail of the probability distribution function (PDF) of the metallicity. Based on closure models for the PDF formulation of turbulent mixing, we derive equations for the fraction of gas, P, lying below Z_c, in compressible turbulence. Our simulation data shows that the evolution of the fraction P can be well approximated by a generalized self-convolution model, which predicts dP/dt = -n/tau_con P (1-P^(1/n)), where n is a measure of the locality of the PDF convolution and the timescale tau_con is determined by the rate at which turbulence stretches the pollutants. Using a suite of simulations with Mach numbers ranging from M = 0.9 to 6.2, we provide accurate fits to n and tau_con as a function of M, Z_c/, and the scale, L_p, at which pollutants are added to the flow. For P>0.9, mixing occurs only in the regions surrounding the pollutants, such that n=1. For smaller P, n is larger as mixing becomes more global. We show how the results can be used to construct one-zone models for the evolution of Pop III stars in a single high-redshift galaxy, as well as subgrid models for tracking the evolution of the first stars in large cosmological simulations.Comment: 37 pages, accepted by Ap

    Impact of topology in foliated Quantum Einstein Gravity

    Get PDF
    We use a functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation of gravity to study the scale-dependence of Newton's coupling and the cosmological constant on a background spacetime with topology S^1xS^d. The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of "gravitational instability", modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology S^1xT^d and establishes that the flow is essentially independent of the background topology.Comment: 33 pages, 14 figure
    corecore