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Abstract We use a functional renormalization group equa-
tion tailored to the Arnowitt–Deser–Misner formulation of
gravity to study the scale dependence of Newton’s coupling
and the cosmological constant on a background spacetime
with topology S1 × Sd . The resulting beta functions possess
a non-trivial renormalization group fixed point, which may
provide the high-energy completion of the theory through the
asymptotic safety mechanism. The fixed point is robust with
respect to changing the parametrization of the metric fluctu-
ations and regulator scheme. The phase diagrams show that
this fixed point is connected to a classical regime through
a crossover. In addition the flow may exhibit a regime of
“gravitational instability”, modifying the theory in the deep
infrared. Our work complements earlier studies of the grav-
itational renormalization group flow on a background topol-
ogy S1 × T d (Biemans et al. Phys Rev D 95:086013, 2017,
Biemans et al. arXiv:1702.06539, 2017) and establishes that
the flow is essentially independent of the background topol-
ogy.

Keywords Quantum gravity · Asymptotic safety · Renor-
malization group

1 Introduction and motivation

Asymptotic Safety, first suggested by Weinberg [3,4], con-
stitutes a mechanism for constructing a consistent and pre-
dictive quantum theory for gravity within the framework of
quantum field theory. A central goal of the program is to give
meaning to the path integral over (Euclidean) metrics:

Z =
∫

Dĝ exp(−S[ĝ]), (1)

a e-mail: whouthoff@science.ru.nl
b e-mail: kurov.aleksandr@physics.msu.ru
c e-mail: f.saueressig@science.ru.nl

with S[ĝ] a suitable, diffeomorphism invariant action func-
tional. This task can be addressed along various ways [5],
e.g. by applying continuum renormalization group methods
or discrete Monte Carlo techniques.

Within the causal dynamical triangulations (CDT) pro-
gram, reviewed in [6], the action entering the partition func-
tion (1) is taken as the Einstein–Hilbert action and the parti-
tion sum is taken on background topologies S1 × S3 [7–9] or
on topologies of the form S1 × T 3 [10]. Z is then evaluated
on piecewise linear geometries constructed from elementary
simplices.1 The simplices provide a lattice regularization,
making the partition sum finite. Removing the regulator by
taking the continuum limit then requires a second order phase
transition where the correlation length diverges. For CDT a
candidate for such a phase transition has been identified in
[15,16], also see [17–19] for related investigations. More-
over, random walks on CDT spacetimes exhibit manifold-
like behavior for long diffusion time, indicating the presence
of a classical phase [20–22]. These features are typically
attributed to the presence of a causal structure associated
with the S1-factor in the topology which allows building up
spacetime as a stack of spatial slices.

A second route towards asymptotic safety, reviewed in
[23–28], converts the partition sum (1) into a functional
renormalization group equation (FRGE) for the effective
average action �k [29–31]. Starting from the pioneering work
[32], this program has made significant progress in demon-
strating that the asymptotic safety mechanism may lead to a
viable quantum theory of gravity. In particular, the existence
of a non-Gaussian fixed point (NGFP), which constitutes the
key element in this program, has been demonstrated in a
wide range of approximations [33–47]. Starting from [48–
50] renormalization group flows which resolve the difference
between the background and fluctuation fields have been con-

1 For related work in the context of Euclidean Dynamical Triangula-
tions see [11–14].
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structed, e.g., in [51–61] while the role of the path-integral
measure has recently been discussed in [62–65].2

Despite their common root given by the partition sum
(1), a systematic link between results obtained within the
CDT program and the FRGE approach is still missing. While
the spectral dimension of the resulting quantum spacetimes
have been compared in [73], little is known about the rela-
tion of the two formulations. On this basis, the present work
devises an FRGE study which incorporates all the essential
features underlying the Monte Carlo simulations carried out
within CDT. The natural continuum analogue of the folia-
tion structure imposed on the microscopic spacetimes studied
within CDT is the Arnowitt–Deser–Misner (ADM) formu-
lation reviewed, e.g., in [74]. In this formalism spacetime is
built up from a stack of spatial hypersurfaces �τ on which the
time-variable τ is constant. These hypersurfaces are welded
together such that they fill the entire spacetime. The result-
ing preferred “time” direction obtained in this way plays a
similar role as the causal structure implemented in CDT.

An FRGE tailored to the ADM formalism has been con-
structed in [75,76] and we will use this framework in the
sequel.3 This construction makes manifest use of the back-
ground field formalism. Since most CDT simulations restrict
the geometries contributing to (1) to be of topology S1 × S2

or S1 × S3, we evaluate the flow equation on a background
geometry given by S1 × Sd where the (intrinsic) curvature
of Sd is a free parameter. Moreover, the flow is projected
onto Einstein–Hilbert action which provides the weight of
the partition sum (1) in the CDT framework.

Our work is complementary to the recent investigation
[1,2] in the sense that it uses a different background topol-
ogy. It also provides a detailed analysis on how the flow is
influenced by integrating over different classes of spatial fluc-
tuations and under a change of the regulator scheme. As a
main result, we find that all cases studied in this paper admit
a NGFP suitable for Asymptotic Safety. The phase diagrams
obtained from integrating the flow equations are strikingly
similar to the ones found for background topology S1 × T d

[1,2]. In particular, we show that there are specific combina-
tions of parameterizing the metric fluctuations and regulating
the flow equation which realizes the double-fixed point sce-
nario found in [1] in four spacetime dimensions. In this case
the RG trajectory realized by Nature, as described in [80], is
well defined on all length scales. The mechanism underlying
the completion of the RG trajectories in the deep infrared is
closely related to the proposal of “erasing the cosmological
constant through a gravitational instability”, recently made
in [81].

2 For selected work on Asymptotic Safety in gravity–matter models see
[66–72].
3 For applications of this formalism to Hořava–Lifshitz gravity [77] see
[78,79].

The rest of the work is organized as follows. Section 2
introduces the essential elements of the ADM formalism
together with the corresponding FRGE. The beta functions
governing the flow of Newton’s coupling and the cosmolog-
ical constant are constructed in Sect. 3 and their properties
are analyzed in Sect. 4. We close with a brief discussion of
our findings in Sect. 5. Technical details as regards the back-
ground geometry, the structure of the flow equation, and the
evaluation of the operator traces are provided in Appendix
A, Appendix B, and Appendix C, respectively.

2 Renormalization group flows in the ADM formalism

Our construction of the gravitational renormalization group
(RG) flow is based on the FRGE for the effective aver-
age action [29–31] tailored to the Arnowitt–Deser–Misner
(ADM) formulation [75,76]. This section summarizes the
central points of the construction.

2.1 Parametrization of the fluctuation fields

The ADM formalism decomposes the spacetime metric gμν

into a lapse function N (τ, y), a shift vector Ni (τ, y) and a
metric σi j (τ, y). The later measures distances on the spatial
slices �τ defined by τ = const. For Euclidean signature this
decomposition is given by

ds2 = gμν dxμdxν

= N 2dτ 2 + σi j (dy
i + Nidτ)(dy j + N jdτ). (2)

At the level of the metric tensor, this entails

gμν =
(
N 2 + Ni Ni N j

Ni σi j

)
,

gμν =
(

1
N2 − N j

N2

− Ni

N2 σ i j + Ni N j

N2

)
. (3)

An infinitesimal coordinate transformation acts on the space-
time metric via δgαβ = Lv gαβ whereLv is the Lie derivative.
This transformation induces the transformation law for the
component fields

δN = ∂τ ( f N ) + ζ k∂k N − NNi∂i f,

δNi = ∂τ (Ni f ) + ζ k∂k Ni + Nk∂iζ
k

+ σki∂τ ζ
k + NkN

k∂i f + N 2∂i f ,

δσi j = f ∂τ σi j + ζ k ∂kσi j + σ jk ∂iζ
k + σik ∂ jζ

k

+ N j ∂i f + Ni∂ j f, (4)

where the vector vα has been decomposed into a time-
component f and a vector tangent to the spatial slice ζ i .

The construction of the flow equation for the ADM formal-
ism uses the background field method. The quantum fields
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N , Ni , σi j are decomposed into a fixed (but arbitrary) back-
ground N̄ , N̄i , σ̄i j and fluctuations around this background
N̂ , N̂i , σ̂i j . For the lapse function and the shift vector, we
resort to a linear split

N = N̄ + N̂ , Ni = N̄i + N̂i . (5)

The fluctuations of σi j may be parametrized either through
a linear or an exponential split

linear: σi j = σ̄i j + σ̂i j ,

exponential: σi j = σ̄il [eσ̂ ]l j . (6)

Here indices are raised and lowered with the background
metric. Essentially, the choice of split (6) determines the type
of fluctuations admissible in the construction: the exponential
split guarantees that σi j and σ̄i j have the same signature while
in the linear split the fluctuations may change the signature
of σi j . The exponential split of the spatial metric in the ADM
decomposition then has the same effect as in the covariant
construction [39,63–65]: in both cases fluctuations cannot
change the signature of the metric.

At the level of the spacetime metric, the exponential split
(6) ensures that the signature of the time direction and spatial
metric remains unchanged, independently of the value of the
fluctuation fields. This can be seen from computing the deter-
minant of gμν . Applying the method of Schur complements
yields

det(gμν) = N 2 det(σi j ). (7)

Here N 2 is positive by construction and the exponential split
ensures that σi j has the same signature as σ̄i j . Thus the ADM
formalism in the exponential parametrization constitutes a
refinement of the standard exponential parametrization by
restricting the quantum fluctuations to the set which con-
serves the signature of the spatial and time part of the space-
time metric independently.

In terms of practical computations, it is convenient to com-
bine the linear and exponential splits according to

σi j � σ̄i j + σ̂i j + α
2 σ̂ik σ̄ kl σ̂l j + · · · . (8)

The parameter α takes the value α = 0 for the linear and
α = 1 for the exponential split. The dots represent terms
containing cubic and higher powers of the fluctuation fields.
Since these terms will not contribute to the present compu-
tation we refrain from giving their explicit structure at this
stage.

2.2 The functional renormalization group equation

The scale dependence of coupling constants can conveniently
be obtained from the FRGE for the effective average action

�k [29–32]. Besides the gravitational action, �k also contains
suitable gauge-fixing and ghost terms

�k[χ̂; χ̄] = �
grav
k [χ̂; χ̄ ] + �

gauge−fixing
k [χ̂; χ̄] + �

ghost
k [χ̂; χ̄ ].

(9)

Here χ̂ and χ̄ denote the collection of fluctuation fields and
background fields, respectively. The central property of �k

is that its dependence on the RG scale k is governed by the
formally exact RG equation

k∂k�k = 1

2
Tr

[(
�

(2)
k + Rk

)−1
k∂kRk

]
. (10)

Here�
(2)
k is the second variation of�k with respect to the fluc-

tuation fields and the trace indicates an integration over loop
momenta. The regulator Rk provides a k-dependent mass
term for the fluctuation modes with momenta p2 � k2 and
vanishes for p2 � k2. In the propagator (�

(2)
k + Rk)

−1,
the regulator suppresses the contribution of fluctuations with
momenta p2 � k2 to the trace. The term k∂kRk in the numer-
ator ensures that fluctuations with p2 � k2 do not contribute
to the trace. As a consequence the right-hand-side of Eq. (10)
is finite. Moreover, the flow of �k is driven by fluctuations
whose momenta are comparable to the RG scale k.

The FRGE realizes several welcome features. Firstly, ver-
tices extracted from �k include quantum corrections result-
ing from integrating out fluctuations with momenta p2 �
k2. Thus �k provides a one-parameter family of effective
descriptions of physics at the scale k. This realizes Wilson’s
idea of renormalization. Secondly, the FRGE may be used
to study the RG flow and phase diagram of a theory with-
out specifying an initial or fundamental action. This feature
is particularly relevant in the context of asymptotic safety
where the fundamental action is unknown a priori and arises
as a fixed point of the flow. Such fixed points may be visible
already in relatively simple projections of the FRGE. In the
next section, we will utilize this feature and make a specific
ansatz for the effective average action (9) in order to study
RG flow of Newton’s coupling and the cosmological constant
in a setting tailored to CDT.

3 Einstein–Hilbert truncation on S1 × Sd

We now use the FRGE (10) to construct the beta functions
governing the flow of Newton’s coupling and the cosmolog-
ical constant on a background topology S1 × Sd .

3.1 Ansatz for the effective average action

We approximate the gravitational part of �k by the Euclidean
Einstein–Hilbert action. In terms of the ADM fields the
resulting action is given by

123
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�
grav
k = 1

16πGk

∫
dτdd yN

√
σ [Ki j K

i j − K 2 − R + 2�k].
(11)

Here

Ki j ≡ 1

2N
(∂τ σi j − Di N j − Dj Ni ) (12)

denotes the extrinsic curvature, K ≡ σ i j Ki j is its trace,
and R is the intrinsic curvature constructed from σi j . The
ansatz comprises two scale-dependent couplings, Newton’s
coupling Gk and the cosmological constant �k .

At this stage, it is convenient to make an explicit choice for
the background fields. In the present work, we will choose a
class of backgrounds with topology S1 × Sd . Explicitly, we
take

N̄ = 1, N̄i = 0, σ̄i j (τ, y) = σ̄ Sd
i j (y) (13)

where σ̄ Sd
i j is a one-parameter family of metrics on the sphere

Sd with radius r and independent of τ . The curvature tensors
for this background geometry then satisfy

K̄i j = 0 (14)

and

R̄i jkl = R̄
d(d−1)

(
σ̄ik σ̄ jl − σ̄il σ̄ jk

)
, R̄i j = 1

d σ̄i j R̄, (15)

with R̄ being constant. A key property of this background is
the existence of a global Killing vector field ∂τ . This feature
allows one to perform a Wick rotation without generating
a complex background geometry. Denoting expressions in
Euclidean and Lorentzian signature by subscripts E and L ,
the corresponding analytic continuation is given by

τE → −iτL , Ni
E → i N i

L . (16)

At this stage it is instructive to verify that this background
is sufficient to disentangle the flow of Gk and �k . For this
purpose, we take the k-derivative of the ansatz (11) and sub-
sequently set the fluctuation fields to zero

k ∂k�
grav
k

∣∣
χ̂=0 = k∂k

(
1

16πGk

∫
dτdd y

√
σ̄

[−R̄ + 2�k
])

.

(17)

This indicates that on the background (13) the flow of New-
ton’s coupling can be constructed from the coefficients mul-
tiplying the intrinsic background curvature while the beta
function for the cosmological constant is encoded in the vol-
ume terms appearing on the left- and the right-hand-side of

the FRGE. Thus it suffices to keep track of these two terms
in the following.

The gravitational part of the effective average action has
to be complemented by a suitable gauge-fixing and ghost
action. Following the strategy [1], we use the gauge freedom
in such a way that all fluctuation fields including the lapse
function and the shift vector acquire a relativistic dispersion

relation. Moreover, terms which are of the form E
√

δi j pi p j

are consistently eliminated from the Hessian �
(2)
k . These two

conditions actually fix the choice of gauge uniquely,

�
gf
k = 1

32πGk

∫
dτdd y

√
σ̄

[
F2 + Fi σ̄

i j Fj

]
. (18)

The F and Fi are linear in the fluctuation fields and read

F =
[
∂τ N̂ + D̄i N̂i − 1

2∂τ σ̂
]

Fi =
[
∂τ N̂i − D̄i N̂ − 1

2 D̄i σ̂ + D̄ j σ̂i j

]
, (19)

where σ̂ ≡ σ̄ i j σ̂i j and D̄i denotes the covariant derivative
constructed from σ̄i j . The gauge fixing (19) can be derived by
adapting the harmonic gauge condition to the specific class of
backgrounds and specifying the parametrization of the fluctu-
ation fields to the one generated by the ADM decomposition.
The action of the Faddeev–Popov ghosts is then constructed
in the standard way. It comprises one pair of scalar ghosts
c̄, c and one pair of spatial vector ghosts b̄i , bi . Restricting
to terms quadratic in the fluctuation fields, the action reads

�
gh
k =

∫
dτdd y

√
σ̄

[
c̄� c + b̄i

(
� − R̄

d

)
bi

]
, (20)

where � ≡ −∂2
τ − σ̄ i j D̄i D̄ j is the D-dimensional Laplace

operator constructed from the background spacetime.
In order to compute the propagator (�k + Rk)

−1, it is
useful to perform a transverse-traceless decomposition of the
fluctuation fields which is adapted to the background. The
shift vector is decomposed into a transverse vector ui and a
scalar B

N̂i = ui + D̄i B, D̄i ui = 0. (21)

For the fluctuations of the spatial metric, we resort to the
standard transverse-traceless decomposition of a symmetric
tensor,

σ̂i j = hi j + D̄iv j + D̄ jvi +
(
D̄i D̄ j − 1

d σ̄i j D̄
2
)

ψ + 1
d σ̄i j h

(22)

where the component fields are subject to the constraints

D̄i hi j = 0, σ̄ i j hi j = 0, D̄ivi = 0, (23)

123



Eur. Phys. J. C   (2017) 77:491 Page 5 of 17  491 

and σ̄ i j σ̂i j ≡ σ̂ = h. The Jacobians coming from these
decompositions are absorbed into the momentum-dependent
field redefinition (B.16). The matrix elements of �

(2)
k with

respect to these component fields are computed in Appendix
B and summarized in Table 4. The result shows that the field
decomposition diagonalizes �

(2)
k in field space, apart from

the scalar sector containing the two fields N̂ and h.
The final ingredient required in the evaluation of the FRGE

is the regulator Rk . On the background (13) the Hessian �
(2)
k

is matrix valued in field space. From Table 4 one finds that
the typical matrix element has the structure

[
�

(2)
k

]
ab

= (32πGk)
−s [� + q R̄ + · · · ]ab, (24)

where s takes the values 0, 1 and the dots represent a possible
contribution from the cosmological constant. Moreover, q is
a fixed, d-dependent numerical coefficient which depends
on the field indices a, b. For example, the ghost action (20)
leads to s = 0 and qc̄c = 0 and qb̄b = −1/d. Based on
the structure (24) there are two natural choices for a coarse-
graining operator. Following the nomenclature introduced in
[24], we define

TypeI : � ≡ �,

TypeII : � ≡ � + q R̄.
(25)

For notational convenience, the two regularization schemes
(25) are combined by introducing a parameter r via

� ≡ � + r q R̄. (26)

Setting r = 0 or r = 1 then corresponds to a regulator
scheme of Type I and Type II, respectively. The matrix ele-
ments of Rk are then taken as operator-valued functions
depending on the coarse-graining operator. Their explicit
form can be obtained by the replacement rule

� �→ Pk ≡ � + Rk(�) (27)

where Rk(z) is a scalar profile function. The parametrization
of the fluctuation fields combined with the specific choices
for the coarse-graining procedure, which are considered in
the following, are summarized in Table 1. At this stage, we
have all the ingredients for evaluating the flow equation for
the ansatz (11).

We remark that for a Type II regulator scheme the coarse-
graining operators � are not necessarily positive semi-
definite. Their explicit spectrum can be constructed from
the eigenvalues of the Laplacian on the d-sphere listed, e.g.,
in [34]. In this way one finds that setting r = 1 implies
that � has negative eigenvalues when acting on the con-
stant ψ-mode and the two lowest eigenmodes in the B-
sector if d = 3. In addition the linear split combined

Table 1 Parameter sets used in analyzing the dynamics encoded in the
beta functions (29). The value qoff−diag specifies the endomorphism in
the N̂–h sector, where the coarse-graining operator is then given by
� = � + qoff−diag R̄

Metric fluctuations Regulator α r qoff−diag

Linear I 0 0 0

II0 0 1 0

II1 0 1 d−2
d

II2 0 1 d−4
d

Exponential I 1 0 0

II0 1 1 0

II1 1 1 d−2
d

II2 1 1 d−3
d

with the II2 regularization scheme leads to negative eigen-
values in the N̂–h sector. The mode count for the vector
ghosts is identical to the B–ui sector. The negative eigen-
values of � occurring in the Type II case then suggest
that the Type I regularization procedure may be preferred.
The possibility for adjusting the spectrum of the coarse-
graining operator by including a suitable endomorphism
component may be used to implement conditions similar
to the “equal lowest eigenvalue scheme” advocated in [62].
While it would be desirable to have a more complete under-
standing of the regulator dependence in the present case,
we limit ourselves to the analysis of the cases introduced
in Table 1.

We close this subsection with the following remark. In
the companion paper [1] the setup (11) was used to construct
the beta functions of Gk and �k on a Euclidean Friedmann–
Robertson–Walker background. In this case the background
geometry is characterized by R̄ = 0 while one has a non-
vanishing extrinsic curvature K̄i j . The beta function for the
Newton coupling is then read off from the extrinsic curva-
ture terms. At the level of classical general relativity the
two incarnations of Gk related to the extrinsic and extrin-
sic curvature terms coincide due to diffeomorphism invari-
ance of the Einstein–Hilbert action. At the level of the FRGE
it is expected that the two projection schemes may lead to
(slightly) different results. Firstly, introduction of the regu-
lator Rk may break the full diffeomorphism group to a sub-
group so that the two projections actually construct the flow
of two different coupling constants. Moreover, working on
different backgrounds may result in different organization
schemes for the fluctuation modes, indicating that modes
integrated out at a certain scale k could be different in the
two settings. The setting of this paper provides an ideal test-
ing ground for obtaining a quantitative understanding of these
effects.
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3.2 Beta functions

The beta functions governing the scale dependence of Gk

and �k are constructed in Appendix C. For conciseness, we
limit ourselves to the expression obtained from setting the
endomorphism piece in the scalar sector spanned by N̂ and
h to zero. Moreover, all threshold functions are evaluated
with a Litim-type regulator (C.28). The result is conveniently
expressed in terms of the dimensionless quantities

η ≡ (Gk)
−1∂t Gk, λk ≡ �k k

−2, gk ≡ Gk k
d−1, (28)

where η is the anomalous dimension of Newton’s coupling.
The scale dependence of the dimensionful couplings is then
governed by the beta functions

k∂kgk = βg(gk, λk), k∂kλk = βλ(gk, λk). (29)

Defining

Bdet ≡ d − 1 − (3d − 2 + α)λ + 2dλ2 (30)

one has

βg = (d − 1 + η) g,

βλ = (η − 2)λ + g
(4π)(d−1)/2

[
− 4(d+1)

�((d+3)/2)

+
(
d + d2+d−2

2(1−(2−α)λ)
+ 2(d−1)−(3d−2+α)λ

Bdet

)

×
(

2
�((d+3)/2)

− η
�((d+5)/2)

) ]
. (31)

The anomalous dimension of Newton’s coupling takes the
form

η = 16πg B1(λ)

(4π)(d+1)/2 + 16πg B2(λ)
. (32)

The functions B1 and B2 depend on λ as well as the param-
eters d, r, α. The terms appearing in these expressions are
conveniently organized in terms of the contributions found
in Appendix C.2,

Ba = Ba,1 + Ba,2 + Ba,3 + Ba,4 + Ba,5, a = 1, 2. (33)

The explicit expressions for the building blocks are

B1,1 = − d3+3d2+20d−6+6r(d−1)2

12 d �((d+3)/2)
+ δ2,d

d �((d+1)/2)
,

B1,2 = d4−15d2−22d+12+3
(
d3+3d2+6d−4

)
δ2,d

12 d (d−1) (1−(2−α)λ) �((d+1)/2)

− r d2(d−3)(1+d)(2−α)+4d (3−2α)−4 (3−α)
4 d (d−1) (1−(2−α)λ) �((d+1)/2)

,

B1,3 = (r − 1)
d2(d2−2d−3)(2−α)+4d(3−2α)−4(3−α)

4d(d−1)(1−(2−α)λ)2 �((d+3)/2)
,

B1,4 = 2(d−1)−(3d−2+α)λ
6 Bdet �((d+1)/2)

,

B1,5 = − (d−2)
2d

(d−1)(3d−4+α)−8d(d−1)λ+2d(3d+α)λ2

B2
det �((d+3)/2)

, (34)

and

B2,1 = d3+3d2+6d−6+6r(d+1)2

24d �((d+5)/2)
+ δ2,d

2d �((d+3)/2)
. (35)

The remaining coefficients in B2 are proportional to their B1

counterparts

B1,2 = (d + 1)B2,2, B1,3 = (d + 1)B2,3,

B1,4 = (d + 3)B2,4, B1,5 = (d + 3)B2,5. (36)

This result completes the derivation of the beta functions for
gk and λk on the background topology S1 × Sd . Notably βλ

is independent of the endomorphism parameter r but retains
information on the parametrization of the metric fluctuations.
For α = 0, it agrees with the flow of the cosmological con-
stant obtained on a S1 × T d -background [2]. The beta func-
tions (31) are the main result obtained in this section.

4 Properties of the renormalization group flow

The beta functions derived in the previous section explicitly
retain information on the parametrization of the fluctuation
fields, encoded in the parameter α, and the choice of regular-
ization scheme, parametrized by r . Typically, these parame-
ters have distinguished values. In the following subsection,
we investigate how these choices affect the flow of gk and λk .
Throughout the discussion we will limit ourselves mostly to
the case d = 3, corresponding to a four-dimensional space-
time.

4.1 Fixed point structure and phase diagrams

The beta functions (29) constitute a system of autonomous
coupled non-linear differential equations. In order to under-
stand the dynamics of the system, it is useful to first determine
its fixed points and singularity structure.

Singularities in the beta functions (31) can be traced back
to two sources. First, there are loci in the g–λ plane where
the threshold functions diverge. The location of these lines
depends on α and is independent of r . Evaluating the roots
of Eq. (30), one finds

α = 0 : λ
sing
1 = 1

2 , λ
sing
2 = d−1

d ,

α = 1 : λ
sing
1 = d−1

2d , λ
sing
2 = 1. (37)

All singular lines are independent of g and located at λ > 0.
Notably, the exponential parametrization moves the singular
line λ

sing
1 closer to the origin. The singularity λ

sing
1 is the

counterpart of the gravitational instability discussed in Ref.
[81]. Besides these fixed singularities, there are also lines in
the g–λ plane where the anomalous dimension of Newton’s
coupling diverges. In this case the denominator in Eq. (32)
vanishes. Exploiting the B2(λ) is independent of g, this line
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Fig. 1 Singular loci of the beta functions (31) for the Type I, linear
(left) and Type II0, linear (right) setup in d = 3. The black, solid lines
show the fixed singularities (37) while the divergence of η is given by
the dashed blue line. The two diagrams illustrate the two prototypical
cases where the fixed singularity is screened (left) or unscreened (right)
by ηsing

is conveniently described by a parametrized curve obtained
by equating the denominator of η to zero and solving for
gsing:

ηsing : gsing = −2(d−3) π(d−1)/2

B2(λ)
. (38)

The position of this singular line depends on the two param-
eters r and α.

The singular lines (37) and (38) are shown in Fig. 1. At this
point it is useful to distinguish between the two qualitatively
different scenarios.

Focusing on the region where g > 0 one inevitably
encounters a singular line when moving to positive values
of λ. In the first setting, this singular locus is associated with
a divergence of the anomalous dimension η given by (38).
The prototypical singularity structure for this case is shown
in the left diagram of Fig. 1. It is realized for the exponen-
tial parametrization (α = 1) and the linear parametrization
(α = 0) combined with a Type I and Type II2 regulariza-
tion scheme. In the second setting the locus ηsing has a pole

located before the first fixed singularity. As a consequence
the line λ

sing
1 is not entirely shielded by the divergence of η.

This scenario is realized for the linear parametrization α = 0
with the Type II0 and Type II1 regulator. It will be shown
below that the different singularity structures lead to quali-
tatively different low-energy behaviors of the RG flow in the
region λ > 0.

Subsequently, we analyze the fixed point structure of the
beta functions. At a fixed point (g∗, λ∗) the beta functions
vanish by definition

βg(g∗, λ∗) = 0, βλ(g∗, λ∗) = 0. (39)

In the vicinity of a fixed point the properties of the RG flow
can be studied by linearizing the beta functions. The dynam-
ics of the linearized system is encoded in the stability matrix
Bi j = ∂g j βgi |g=g∗ . The stability coefficients θ are defined as
minus the eigenvalues of Bi j . For eigendirections with θ > 0
the solutions are dragged into the fixed point for k → ∞
while eigendirections with θ < 0 repel the flow in this limit.

All implementations of the beta functions possess a Gaus-
sian fixed point (GFP) located in the origin. This fixed point
corresponds to the free theory and its critical exponents
are given by the mass dimension of the dimensionful cou-
plings. Besides the GFP the beta functions also possess non-
Gaussian fixed points (NGFPs). Limiting to the physically
interesting region with g > 0 located to the left of the first
singular loci, a list of the NGFPs, including their position
and stability coefficients, is given in Table 2. For the linear
split (α = 0) all regulators give rise to a NGFP with located
at g > 0, λ > 0. The complex stability coefficients with
positive real part indicate that this fixed point is a spiral-
ing attractor which captures the RG flow in its vicinity as
k → ∞. In addition the Type II regulator may give rise to a
second NGFP. This fixed point is a saddle point possessing
one attractive and one repulsive eigendirection. Notably, the
cases which possess this second fixed point coincide with the
ones where ηsing does not screen the singular line λ

sing
1 , cf.

Fig. 1.
The exponential split (α = 1) gives rise to a similar pic-

ture. In this case the specific structure of the off-diagonal con-
tributions implies that the Type II0 and Type II2 regulators
actually coincide, giving rise to the same beta functions. Also
this case gives rise to a NGFP with complex critical expo-
nents which acts as a UV-attractor of the flow. The distinct
critical exponents accompanying the spiraling NGFPs seen
in the linear and exponential setting strongly support that they
correspond to two distinct universality classes.4 The Type II1

case does not support a NGFP in the physically interesting

4 This agrees with the conclusion reached in [82] where it was shown
that the linear and exponential parametrization lead to Liouville theories
with different central charge.
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Table 2 NGFPs of the beta
functions (31) evaluated for the
linear split (α = 0) and the
exponential split (α = 1) and
regulators of Type I and Type II,
respectively. The NGFP
obtained from the optimization
procedure shown in Fig. 2 is
listed with the label “optimized”

Fluctuations Regulator g∗ λ∗ g∗λ∗ θ1,2

Linear Type I 0.901 0.222 0.200 1.432 ± 2.586i

− − − − −
Type II0 0.896 0.203 0.182 1.545 ± 2.032i

0.342 0.438 0.150 2.774 −23.89

Type II1 0.879 0.182 0.160 1.765 ± 1.787i

0.510 0.400 0.204 3.016 −13.28

Type II2 0.901 0.222 0.200 1.329 ± 2.332i

− − − − −
Optimized 0.900 0.230 0.207 1.414 ± 2.941i

− − − − −
Exponential Type I 1.049 0.249 0.262 0.444 ± 4.041i

Type II0 1.050 0.249 0.261 0.342 ± 3.855i

Type II2 1.050 0.249 0.261 0.342 ± 3.855i

region. This indicates that the system acts rather sensitive to
a change of the eigenvalue spectrum in the scalar N̂–h sec-
tor. Thus we will limit our further considerations to the case
qnon−diag = 0.

At this stage, it is natural to ask if there is a preferred
value for the parameter r . Since a change in the regulariza-
tion procedure should not affect physical quantities, a natural
selection criterion for r is to minimize the sensitivity of these
quantities with respect to this parameter. This optimization
procedure [83–86] may then be used to find a “best value”
for the parameter r . Within the present computation natural
candidates for investigating the r -dependence are the stabil-
ity coefficients and the universal product g∗λ∗. For a linear
split their r -dependence is displayed in Fig. 2. While Imθ

and g∗λ∗ are monotonically decreasing as r increases, Reθ
develops a minimum located at r linear

opt = −0.605. The cor-
responding values for the position and stability coefficients
of the NGFP are listed in Table 2. A comparison among the
characteristic properties of the NGFP reveals that the “opti-
mized values” turn out to be very close to the fixed point seen
in the Type I regularization scheme. For the exponential split
all physical quantities are monotonic functions of r . Thus in
this case the principle of minimal sensitivity does not identify
a preferred value for r .

Based on the rather detailed discussion of their fixed points
and singularity structure, it is rather straightforward to obtain
the phase diagrams resulting from integrating the flow equa-
tions (29) numerically. Our focus is on the physically inter-
esting region where Newton’s coupling is positive and con-
taining the GFP. The resulting flows are shown in Fig. 3.
The left and right column display the results obtained with
a linear (α = 0) and exponential split (α = 1), respectively.
The top row stems from a Type I regulator while the bottom
row uses the Type II0 regularization scheme. In all cases the
GFP is marked with O while the non-Gaussian UV attractor

carries the label A. The red lines mark the singular loci ηsing,
Eq. (38), while the blue lines connect the fixed points. All
arrows point towards lower RG scales, i.e. in the direction of
integrating out modes.

As expected from the results given in Table 2, the flow
shows qualitative differences depending on whether the fixed
point structure also contains the saddle point B (Type II0, lin-
ear) or just the NGFP A (Type I, linear; exponential split). In
the latter case, the phase diagram is dominated by the inter-
play of the GFP and NGFP. The NGFP controls the high-
energy (k → ∞) limit of all trajectories. Lowering the RG
scale, the trajectories undergo a crossover to the GFP. In
the vicinity of the GFP the trajectories develop a “classical
regime” where the dimensionful couplings are almost inde-
pendent of the RG scale k. Following [35], the solutions are
classified according to the value of the cosmological constant
in this regime: trajectories located to the left and the right of
the blue separatrix give rise to a negative and positive value
and are termed Type Ia and Type IIIa, respectively. The blue
line separating these phases has a vanishing infrared value of
�k . The trajectories with �0 ≤ 0 are complete in the sense
that they are well defined on the entire interval k ∈ [0,∞].
The trajectories with a positive cosmological constant termi-
nate at ηsing at a finite value k. The presence of the saddle
point B modifies this very last stage of the RG evolution. In
this case the singularity ηsing is lifted and replaced by a RG
trajectory connecting the fixed point B and the quasi-fixed
point C located at (λ, g) = (1/2, 0). The flow then follows
this line and is dynamically driven into the quasi-fixed point
which provides the IR-completion of these trajectories.

Figure 4 displays a set of sample trajectories obtained
from integrating the beta functions for the linear split with a
Type II0 regularization scheme. The top line gives the scale
dependence of gk andλk . They interpolate between the NGFP
for ln k � 6 and the quasi-fixed point C for ln k � 1. The
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Fig. 2 Illustration of the r -dependence of the stability coefficients and
universal product g∗λ∗ of the NGFP found for the linear split (α = 0).
The real part of θ possesses a minimum for r linear

opt = −0.605 while Imθ

and g∗λ∗ decrease monotonically for increasing r

lower diagrams recasts this flow in terms of the dimensionful
couplings Gk and �k . In this way the three scaling regimes
exhibited by the solutions become even more pronounced:
in the NGFP regime one has Gk ∝ k−2 while �k ∝ k2. The
classical regime is situated around ln k ≈ 0. Once λk reaches
λk ≈ 1/2 the flow enters into a new phase where Gk and �k

are driven to zero dynamically. The RG trajectories obtained
from the other cases shown in Fig. 3 are similar. The only

difference consists in the absence of the final low-energy
phase. Here the flow terminates in the classical regime at a
finite value of k.

At this stage, a cautious remark is in order. From the inset
in the top-left diagram of Fig. 4 one finds that the new IR
phase comes with an anomalous dimension of Newton’s cou-
pling, ηk ≈ 2. This has profound consequences for the reg-
ularization procedure. The regulator obtained from the pre-
scription (27) has the structure

Rk ∝ (Gk)
−1 k2 R(0)(�/k2) (40)

where the profile function R(0)(�/k2) satisfies

lim
k→0

R(0)(�/k2) = 1. (41)

In general, this asymptotic behavior ensures that the cutoff
vanishes as k → 0. The last property fails, however, if Gk ∝
k2 or, equivalently η = 2, as k → 0. In this case the k-
dependence of Newton’s coupling cancels the k2 term and
the cutoff Rk remains finite as k → 0. As a result, a flow
approaching the quasi-fixed point C may not integrate out
all fluctuation modes, even though the limit k → 0 is well
defined. Of course, all other phases displayed in Fig. 4 are
unaffected by this peculiarity.

5 Discussion and outlook

In this work we have studied the gravitational renormaliza-
tion group (RG) flow in the Arnowitt–Deser–Misner (ADM)
formalism, utilizing backgrounds with a topology S1 × Sd .
This investigation is mainly motivated through the Causal
Dynamical Triangulation (CDT) program where this partic-
ular topology has been used extensively in order to study
properties of the gravitational partition sum through Monte
Carlo simulations. The detailed results reported in the main
part of the manuscript and collected in the appendices pro-
vide an important stepping stone for comparing properties
of the quantum spacetimes arising within the RG and CDT
framework.

Our analysis focused on the scale dependence of the
(background) Newton’s coupling and cosmological constant
obtained from a projection of the functional renormaliza-
tion group equation (10). The flow possesses a non-Gaussian
fixed point (NGFP) suitable for rendering the theory asymp-
totically safe. The existence of this fixed point is robust with
respect to changing the parametrization of the gravitational
fluctuations and regularization procedure. The results sum-
marized in Table 2 suggest that the NGFPs obtained from a
linear and exponential split of the metric fluctuations belong
to two different universality classes. The phase diagrams col-
lected in Fig. 3 show that the flow emanating from the NGFP
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Fig. 3 Phase diagrams obtained from integrating the beta functions
(29) for a Type I regulator (r = 0, top line) and a Type II0 regulator
(r = 1, bottom line). The first column gives the result for a linear split

of the spatial metric (α = 0) while the second column corresponds to
an exponential split (α = 1). All flows possess a NGFP providing the
UV-completion of the RG trajectories

is connected to a classical regime where Newton’s coupling
and the cosmological constant are essentially independent
of the renormalization group scale. For specific choices of
the regularization schemes, the NGFP is supplemented by
a second fixed point solution constituting a saddle point in
the g–λ plane. The interplay of the two fixed points alters
the singularity structure of the beta functions which has pro-
found consequences for the infrared behavior of the flow; see
Fig. 4.

The results obtained in this work are complementary to
the ones reported in [1,2] which use a very similar construc-
tion on a background topology S1 × T d . At the geometrical
level, the key difference in these two classes of backgrounds
is that S1 × Sd possesses a Killing vector in the (Euclidean)
time-direction which permits a Wick rotation to Lorentzian
time without obtaining complex background geometries. At
the level of the flow equation, the two projection schemes
construct the flow of Newton’s coupling based on two differ-
ent interaction monomials: the S1 ×T d background uses the
kinetic terms for the gravitational fluctuations while S1 × Sd

uses a potential term build from the intrinsic curvature. At

the classical Einstein–Hilbert action the relative coefficients
of these terms are fixed by the diffeomorphism invariance.
At the quantum level it is highly encouraging that the fixed
point structure and phase diagrams resulting from these two
projection schemes are almost identical.

At this stage constructing gravitational RG flows within
the ADM formalism has achieved a similar robustness as
the one encountered in comparable computations using a
covariant parametrization of the metric fluctuations [34–39],
at least at the background level. From the conceptual point
of view, it is clear that the background field formalism based
on the ADM decomposition gives rise a natural parametriza-
tion of the metric fluctuations. This parametrization is related
to the one used in the covariant linear split in a non-linear
way [2]. In particular, combining the ADM-split and the
exponential parametrization of the fluctuations on the spa-
tial slices ensures that the signatures of the time part and
spatial part of the physical metric are independently con-
served when quantum fluctuations are taken into account. In
this sense, the ADM formalism provides a more refined ver-
sion of the exponential parametrization recently investigated
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Fig. 4 Sample RG trajectories obtained from solving the flow equa-
tions for α = 0 and a Type II0 regulator for the initial conditions
ginit = 0.0005 and λinit = 10−1 (blue line), λinit = 10−2 (magenta
line), and λinit = 10−3 (gold line). For k → ∞ the trajectories are

governed by the NGFP. At intermediate scales one obtains a classical
regime where the dimensionful Gk and �k are independent of k. Once
λ � 0.5 the gravitational instability sets in and drives the dimensionful
Newton coupling and cosmological constant to zero dynamically

in [63,64]. An interesting consequence associated with the
different parametrization schemes for the metric fluctuations
is that it may shift contributions of the RG flow from back-
ground vertices to vertices containing fluctuation fields. It
would be very interesting to investigate this effect in approx-
imations of the flow equation which also takes vertices con-
taining the fluctuation fields into account. We hope to come
back to this point in the future.

The beta functions (31) possess a “gravitational instabil-
ity” associated with the singular line (37). In Ref. [81], it
has been suggested that this type of instability could provide
a dynamical solution for the cosmological constant problem
through strong RG effects in the infrared. In Fig. 4 we demon-
strated that this mechanism may also work in the context
of pure gravity. Our general analysis identified two possi-
ble caveats to this scenario. First, the gravitational instability
may be shielded by a diverging anomalous dimension. This
scenario is realized by the flows displayed in the top-left, top-
right, and bottom-right diagram of Fig. 3. Second, the anoma-
lous dimension may acquire a value for which the implemen-
tation of the Wilsonian RG procedure requires a modifica-
tion of the (standard) regularization scheme. It would be very

interesting to see if dilaton gravity, where Newton’s coupling
is generated dynamically, resolves these difficulties in a nat-
ural way.
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Appendix A: The background geometry S1 × Sd

Throughout this work we simplify the computation by choos-
ing a background geometry with topology S1 × Sd . The size
of S1 is kept fixed while the Sd factor denotes a one-parameter
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Table 3 Heat-kernel coefficients for fields with differential constraints
on the product manifold S1 × Sd . The labels indicate that the result-
ing ai have been computed for spacetime scalars (S), spatial vectors

(V), spatial, symmetric tensors (T), transverse spatial vectors (TV), and
symmetric, transverse-traceless spatial tensors (TTT), respectively

S V T TV TTT

a0 1 d 1
2d(d + 1) d − 1 1

2 (d + 1)(d − 2)

a2
1−6q

6
(1−6q)d

6
(1−6q)d(d+1)

12
(d+2)(d−3)+6δd,2

6d − q(d − 1)
(d+1)(d+2)(d−5+3δd,2)

12(d−1)
− q (d−2)(d+1)

2

family of spheres with arbitrary but fixed radius. Keeping the
radius of Sd as a free parameter allows one to disentangle the
volume term from an interaction term build from the intrinsic
curvature scalar. Thus the background is sufficiently complex
for distinguishing the two interaction monomials appearing
on the left-hand-side of the projected flow equation.

In terms of the D = d + 1-dimensional geometry, the
background metric is given by ḡμν = diag[1, σ̄i j ], where σ̄i j
denotes the metric on the d-sphere. Since Sd is a maximally
symmetric space, the Riemann tensor R̄i jkl and the Ricci
tensor R̄i j constructed from σ̄i j can be related to the Ricci
scalar R̄ by

R̄i jkl = R̄

d(d − 1)

(
σ̄ik σ̄ jl − σ̄il σ̄ jk

)
,

R̄i j = 1

d
σ̄i j R̄. (A.1)

In addition the Ricci scalar is covariantly constant, D̄i R̄ = 0.
A comparison with the decomposition (3) then indicates

that the values of the background ADM fields are given by

N̄ (τ, y) = 1, N̄i (τ, y) = 0, σ̄i j (τ, y) = σ̄i j (y). (A.2)

The product nature of the background entails that σ̄i j is inde-
pendent of τ so that derivatives with respect to τ can be
commuted freely with σ̄i j . Moreover, the Laplacians of the
background spacetime, � ≡ −ḡμν D̄μ D̄ν , and on the spatial
slices, −σ̄ i j D̄i D̄ j , are related by

� = −∂2
τ − σ̄ i j D̄i D̄ j . (A.3)

This identity allows one to express the differential operators
arising in the second variation of �k to differential operators
constructed from the spacetime metric.

Upon implementing a suitable gauge fixing, all differential
operators entering in the right-hand-side of the flow equation
can be combined into �. The resulting traces can then be eval-
uated using standard heat-kernel techniques [87,88]. For the
present calculation it suffices to keep track of terms contain-
ing at most two covariant derivatives. For a coarse-graining
operator of the form

� = � + q R̄, (A.4)

with q being a numerical coefficient, the relevant terms in
the expansion are given by

Tri e
−s� = 1

(4πs)D/2

∫
dτdd y N̄

√
σ̄

[
a0 + a2 s R̄ + · · · ] .

(A.5)

The terms indicated by the dots do not contributing to
the present approximation. The heat-kernel coefficients ai
depend on the index structure of the field and have been given,
e.g., in [34]. The result is tabulated in Table 3. The terms
proportional to δ2,d arise from eigenmodes of the Laplacian
which do not contribute to the fields appearing on the left-
hand-side of the decompositions (21) and (22).

Appendix B: Evaluation of the second variations

This appendix summarizes the construction of the Hessian
�

(2)
k on a background S1 × Sd .

Appendix B.1: The gravitational sector

We start by expanding the gravitational action (11) to second
order in the fluctuation fields. In order to facilitate the com-
putation, the Einstein–Hilbert action (11) is decomposed into
four interaction monomials

I1 ≡
∫

dτdd y N
√

σ Ki j K
i j ,

I2 ≡
∫

dτdd y N
√

σ K 2,

I3 ≡
∫

dτdd y N
√

σ R,

I4 ≡
∫

dτdd y N
√

σ . (B.6)

Moreover, we use the shorthand notations∫
y

≡
∫

dτ dd y
√

σ̄ , and D̄2 ≡ σ̄ i j D̄i D̄ j , (B.7)

to more easily treat our formulas. The expansion of the kinetic
terms I1 and I2 around the background (13) yields the fol-
lowing terms quadratic in the fluctuation fields:
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δ2 I1 =
∫
y

[
1
2 (∂τ σ̂i j )(∂τ σ̂

i j ) − 2(D̄i N̂ j )(∂τ σ̂i j )

+ (D̄i N̂ j + D̄ j N̂i )(D̄
i N̂ j )

]
, (B.8)

δ2 I2 =
∫
y

[
1
2 (∂τ σ̂ )2 − 2(D̄i N̂i )(∂τ σ̂ ) + 2(D̄i N̂i )

2
]
. (B.9)

The result is independent of the decomposition of the spa-
tial metric in terms of background and fluctuation fields (6):
the parameter α encoding the difference between the linear
and exponential split does not enter these expressions. The
expansion of the potential terms I3 and I4 is given by

δ2 I3 =
∫
y

[
1
2 σ̂i j D̄

2σ̂ i j − σ̂ i j D̄ j D̄k σ̂
k
i

+ (2N̂ + σ̂ )D̄i D̄ j σ̂
i j − (2N̂ + 1

2 σ̂ )D̄2σ̂

+ R̄
(
d−2
d N̂ σ̂ + d2−5d+8

4d(d−1)
σ̂ 2

− d2−3d+4
2d(d−1)

σ̂ i j σ̂i j + α d−2
4d σ̂ i j σ̂i j

)]
, (B.10)

δ2 I4 =
∫
y

[
N̂ σ̂ + 1

4 σ̂ 2 − 1
2

(
1 − α

2

)
σ̂ i j σ̂i j

]
. (B.11)

The α-dependence of δ2 I3 and δ2 I4 indicates that this sec-
tor receives extra terms when the exponential split is imple-
mented.

In order to facilitate the next steps of the computation, we
perform a transverse-traceless decomposition of the fluctu-
ation fields with respect to the background. For fluctuations
in the shift vector N̂i we use

N̂i = ui + D̄i B, D̄i ui = 0, (B.12)

where the constraint ensures that ui is transverse. Analo-
gously, the fluctuations of the spatial metric are decomposed
in a transverse-traceless tensor hi j , a transverse vector vi and
two scalars ψ and h,

σ̂i j = hi j + D̄iv j + D̄ jvi +
(
D̄i D̄ j − 1

d σ̄i j D̄
2
)

ψ + 1
d σ̄i j h

(B.13)

satisfying

D̄i hi j = 0, σ̄ i j hi j = 0, D̄ivi = 0, (B.14)

together with σ̄ i j σ̂i j ≡ σ̂ = h. This change of integra-
tion variables is accompanied by non-trivial Jacobians. Their
form can be deduced by evaluating the scalar products∫

y
N̂i N̂

i =
∫
y

[
uiu

i − BD̄2B
]
,

∫
y
σ̂i j σ̂

i j =
∫
y

[
hi j h

i j − 2vi

[
D̄2 + R̄

d

]
vi

+ d−1
d ψ

[
D̄2

(
D̄2 + R̄

(d−1)

)]
ψ + 1

d h
2
]
.

(B.15)

These Jacobians can then be taken into account by an addi-
tional field redefinition

B �→ ( − D̄2)−1/2
B,

vi �→ ( − D̄2 − R̄
d

)−1/2
vi ,

ψ �→ ( − D̄2)−1/2( − D̄2 − R̄
d−1

)−1/2
ψ. (B.16)

This rescaling also ensures that all fields appearing in the
decompositions have the same dimensionality. With a slight
abuse in notation, we will work with the rescaled fields in the
sequel.

Implementing the transverse-traceless decomposition in
the kinetic terms and taking into account the rescaling (B.16)
yields

δ2 I1 =
∫
y

[
− 1

2hi j ∂
2
τ h

i j − vi ∂
2
τ vi + ui

[
−D̄2 − R̄

d

]
ui

+ 2B
[
−D̄2 − R̄

d

]
B − d−1

2d ψ ∂2
τ ψ − 1

2d h ∂2
τ h

− 2ui ∂τ

[
−D̄2 − R

d

]1/2
vi

− 2(d−1)
d B∂τ

[
−D̄2 − R̄

d−1

]1/2
ψ

+ 2
d B ∂τ

[
−D̄2

]1/2
h
]
, (B.17)

δ2 I2 =
∫
y

[
− 1

2h∂2
τ h − 2BD̄2B

+ 2B ∂τ

[
−D̄2

]1/2
h
]
. (B.18)

The potential terms become

δ2 I3 =
∫
y

[
1
2hi j

[
D̄2 − d2−3d+4

d(d−1)
R̄
]
hi j

− d−2
d R̄ viv

i + (d−2)(d−1)

2d2 ψ
[
−D̄2 − R̄

]
ψ

+ (d−2)(d−1)

2d2 h
[
−D̄2 + d−4

2(d−1)
R̄
]
h

+ (d−2)(d−1)

d2 ψ
[
D̄2

(
D̄2 + R̄

d−1

)]1/2
h

− N̂
[

2d−2
d D̄2 − d−2

d R̄
]
h

+ 2(d−1)
d N̂

[
D̄2

(
D̄2 + R̄

d−1

)]1/2
ψ

+ d−2
4d α R̄

(
hi j h

i j + 2 viv
i + d−1

d ψ2 + 1
d h2

) ]
,

(B.19)

δ2 I4 =
∫
y

[
N̂h + 1

4h
2 − 1

2

(
1 − α

2

)

×
(
hi j h

i j + 2 viv
i + d−1

d ψ2 + 1
d h2

) ]
. (B.20)

Based on these building blocks, the part of �
grav
k quadratic

in the fluctuation fields can be obtained:
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δ2�
grav
k = 1

16πGk

(
δ2 I1 − δ2 I2 − δ2 I3 + 2�k δ2 I4

)
.

(B.21)

It is an intriguing observation that the kinetic terms do not
depend on the specific decomposition of the spatial met-
ric into background and fluctuation fields. The parameter α

encoding the contributions from the exponential decomposi-
tion appears in the potential terms only.

Appendix B.2: The gauge-fixing sector

Inspecting Eqs. (B.18)–(B.19) more closely, one recognizes
that the spatial vector field vi has a rather peculiar disper-
sion relation which does not contain spatial derivatives. This
feature persists if one adopts proper time gauge where the
fluctuations in the lapse function and shift vector are zero.
The gauge fixing (18) cures this problem. This is demon-
strated as follows.

Following the procedure of defining building blocks, it is
natural to express the gauge-fixing action in terms of the two
expressions

δ2 I5 =
∫
x
F2, δ2 I6 =

∫
x
Fi σ̄

i j Fj . (B.22)

The functionals F and Fi are linear in the fluctuation fields,
so that these building blocks are quadratic in the fluctuations.
This feature is indicated by labeling the blocks by δ2 I5 and
δ2 I6. Substituting the field decompositions (B.12) and (B.13)
and invoking the rescaling (B.16) the contributions (B.22) are

δ2 I5 =
∫
y

[
N̂∂2

τ h + B ∂τ

[
−D̄2

]1/2 (
h − 2N̂

)
(B.23)

− N̂∂2
τ N̂ − BD̄2B − 1

4h∂2
τ h

]

and

δ2 I6 =
∫
y

[
vi

[
−D̄2 − R̄

d

]
vi − ui∂

2
τ u

i (B.24)

+ 2 ui ∂τ

[
−D̄2 − R̄

d

]1/2
vi − (d−2)2

4d2 h D̄2 h

− (d−1)2

d2 ψ
[
D̄2 + R̄

d−1

]
ψ − B ∂2

τ B

− N̂ D̄2 N̂ + 2B ∂τ

[
−D̄2

]1/2
N̂

+ (d−2)(d−1)

d2 ψ
[
D̄2

(
D̄2 + R̄

d−1

)]1/2
h

+ 2(d−1)
d B ∂τ

[
−D̄2 − R̄

d−1

]1/2
ψ

+ 2(d−1)
d ψ

[
D̄2

(
D̄2 + R̄

d−1

)]1/2
N̂

− d−2
d h ∂τ

[
−D̄2

]1/2
B − d−2

d h D̄2 N̂
]
. (B.25)

Table 4 List of non-zero matrix elements appearing in the Hessian
�

(2)
k . The gravitational sector is obtained from the combination (B.26)

while the ghost contributions given in the last two lines arise from (20).
Each off-diagonal entry is accompanied by a suitable entry with the
order of the fields reversed

(32πGk)
−1

[
�

(2)
k

]
ab

hi j hi j � − 2
(
1 − α

2

)
�k +

(
d2−3d+4
d(d−1)

− d−2
2d α

)
R̄

vi v
i 2

(
� − 2

(
1 − α

2

)
�k + ( d−3

d − d−2
2d α

)
R̄
)

ψ2 d−1
d

(
� − 2

(
1 − α

2

)
�k + ( d−4

d − d−2
2d α

)
R̄
)

ui ui 2
(
� − 1

d R̄
)

B2 2
(
� − 2

d R̄
)

h2 − d−2
2d

(
� − 2�k + ( d−4

d + α
d

)
R̄
) + α

d �k

N̂h − (
� − 2�k + d−2

d R̄
)

N̂ 2 2�

c̄c (32πGk) �

b̄i bi (32πGk)
(
� − 1

d R̄
)

The matrix elements appearing in the gravitational sector
of the Hessian �

(2)
k can then be read off from the combination

1
2δ2�

grav
k + �

gauge fixing
k . (B.26)

They are summarized in Table 4. Owing to the specific choice
of the gauge fixing all differential operators combine into
Laplacians of the D = d + 1-dimensional background man-
ifold (A.3). Based on the Hessian given in Table 4, the regu-
lator Rk is constructed from the prescription (27). This com-
pletes the explicit construction of the traces appearing on the
right-hand-side of the flow equation.

Appendix C: Evaluation of the operator traces

Based on the results collected in Table 4, the operator traces
appearing on the right-hand-side of the flow equation can
be evaluated by combining standard Mellin-transform tech-
niques, reviewed in [24], with the heat-kernel formula (A.5).
We start by giving a master formula for evaluating the oper-
ator traces in Appendix C.1 while the explicit results are
collected in Appendix C.2.

Appendix C.1: The master formula

The contributions of the operator traces appearing in the
FRGE are conveniently expressed in terms of the dimen-
sionless threshold functions [32]

�
p
n (w) ≡ 1

�(n)

∫ ∞

0
dz zn−1 R(0)(z) − zR(0)′(z)

[z + R(0)(z) + w]p ,

�̃
p
n (w) ≡ 1

�(n)

∫ ∞

0
dz zn−1 R(0)(z)

[z + R(0)(z) + w]p . (C.27)
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For a cutoff of Litim type [36], Rk = (k2 − �s) θ(k2 − �s),
to which we resort in the main part of the paper the integrals
in the threshold functions can be evaluated analytically

�
p
n (w) = 1

�(n + 1)

1

(1 + w)p
,

�̃
p
n (w) = 1

�(n + 2)

1

(1 + w)p
. (C.28)

Apart from the N̂–h sector, all Hessians given in Table 4
have the structure5

P = (32πGk)
−s (

� + w�k + cR̄
)
1 , (C.29)

where1 is the unit on the internal space and the parameter s =
0, 1 in the ghost sector and gravitational sector respectively.
The contributions of the fluctuation fields to the flow can then
be obtained from the following master formula:

Tr
[
P−1∂tRk

]
= kD

(4π)D/2

∫
y

[
a0

(
2 �1

D/2(w̃) − s η �̃1
D/2(w̃)

)

+ a2

(
2 �1

D/2−1(w̃) − s η �̃1
D/2−1(w̃)

)
R̄
k2

− c a0

(
2 �2

D/2(w̃) − s η �̃2
D/2(w̃)

)
R̄
k2

]
.

(C.30)

The heat-kernel coefficients an depend on the spin and endo-
morphism parameter q and are tabulated in Table 3. The
anomalous dimension η is defined in (28) and w̃ ≡ wλk is
the dimensionless version of the combination w�k . For a
Type II regulator c = 0 by construction.

Appendix C.2: Explicit results for the operator traces

Based on the master formula (C.30), it is rather straightfor-
ward to find the contributions of the terms listed in Table 4
to the projection of the RG flow.

Appendix C.2.1: Diagonal terms in the gravitational sector

The master formula (C.30) indicates that in the gravitational
sector the threshold functions always appear in the combina-
tion

q p
n (w̃) ≡ 2 �

p
n (w̃) − η �̃

p
n (w̃). (C.31)

In the diagonal sector, the argument w̃ captures the depen-
dence of the traces on the cosmological constant and it is
convenient to set

w̃d ≡ (α − 2) λ. (C.32)

5 Since constant prefactors multiplying the Hessians drop out of the
trace, we do not include them in the definition of P .

Notably, the value α = 2 (which does not correspond to an
exponential split) is special since the λ-dependence of the
flow is restricted to the off-diagonal sector. Making use of
the master formula (C.30) the contributions of the component
fields associated with the spatial metric are

Trhi j hi j = kD(d+1)(d−2)

2(4π)D/2

∫
x

[
q1
D/2

+
(
d2−3d+4
d(d−1)

− d−2
2d α

)
(r − 1) q2

D/2
R̄
k2

+
(

(d+2)(d−5+3δd,2)

6(d−1)(d−2)

)
q1
D/2−1

R̄
k2

]
,

− r
(
d2−3d+4
d(d−1)

− d−2
2d α

)
q1
D/2−1

R̄
k2

]
,

Trvi vi = kD(d−1)

(4π)D/2

∫
x

[
q1
D/2

+ ( d−3
d − d−2

2d α
)

(r − 1) q2
D/2

R̄
k2

+
(

(d+2)(d−3)+6δd,2
6d(d−1)

− r
( d−3

d − d−2
2d α

))
q1
D/2−1

R̄
k2

]
,

Trψψ = kD

(4π)D/2

∫
x

[
q1
D/2

+ ( d−4
d − d−2

2d α
)

(r − 1) q2
D/2

R̄
k2

+ ( 1
6r

( d−4
d − d−2

2d α
))

q1
D/2−1

R̄
k2

]
. (C.33)

Here the argument of all threshold functions is given by
(C.32).

The traces containing fields B and ui , arising from the
decomposition of the shift vector, do not receive a contribu-
tion from the cosmological constant. In this case the threshold
functions q p

n are evaluated at zero argument and the resulting
trace contributions read

TrBB = kD

(4π)D/2

∫
x

[
q1
D/2

+ ( 1
6 + 2r

d

)
q1
D/2−1

R̄
k2 − 2

d (r − 1) q2
D/2

R̄
k2

]
,

Trui ui = kD(d−1)

(4π)D/2

∫
x

[
q1
D/2

+
(

(d+2)(d−3)+6δd,2
6d(d−1)

+ r
d

)
q1
D/2−1

R̄
k2

− 1
d (r − 1) q2

D/2
R̄
k2

]
. (C.34)

The results (C.33) and (C.34) complete the evaluation of the
operator traces appearing in the diagonal part of the gravita-
tional sector.

Appendix C.2.2: Off-diagonal terms in the gravitational
sector

The final contribution in the gravitational sector originates
from the sector spanned by the fluctuations of the lapse func-
tion N̂ and the conformal modes of the spatial metric h. In this
sector the fluctuations span a full 2 × 2 block matrix in field
space. Following the Type I regularization procedure, one can
construct the cutoff Rk in this sector and subsequently invert
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this block matrix in field space. The propagators appearing in
this procedure are not of the simple form (C.29) but contain
terms quadratic in the spacetime Laplacians. Using the spe-
cific properties of the Litim-type regulator (C.28), the result
can still be expressed in terms of the threshold functions. For
the Type I regulator, the resulting contribution is given by

Trs = kD

(4π)D/2

∫
y

[ (
2 − 3d−2+α

d−1 λ
)

(C.35)

×
(
q1
D/2(w̃s) + 1

6 q
1
D/2−1(w̃s)

R̄
k2

)

− d−2
2d(d−1)

(
3d2−7d+4

d−1 + α − 8dλ + 2d(3d+α)
d−1 λ2

)

× q2
D/2(w̃s)

R̄
k2

]
,

where

w̃s ≡ − 3d−2+α
d−1 λ + 2d

d−1 λ2. (C.36)

The implementation of a Type II regulator in this sec-
tor is non-trivial. This complication can be traced back to
the feature that, in contrast to the other fields, the terms in
the off-diagonal sector come with different relative coeffi-
cients between the Laplacians � and the intrinsic curvature
R̄. Inspecting the structure of �

(2)
k + Rk reveals that there

are two natural candidates for choosing an endomorphism in
the regulator

�1 = � + d−2
d R̄, �2 = � + d−4+α

d R̄. (C.37)

The inclusion of the non-zero endomorphism slightly mod-
ifies the contribution of the scalar sector. For the choice �1

the trace evaluates to

Trs = kD

(4π)D/2

∫
y

[ (
2 − 3d−2+α

d−1 λ
)

×
(
q1
D/2(w̃s) − 5d−12

6d q1
D/2−1(w̃s)

R̄
k2

)

+ d−2
2d

(
d−α
d−1 − 4(d−2+α)

d−1 λ

+ 2(2d2−8d+4+(5d−4)α+α2)

(d−1)2 λ2
)
q2
D/2(w̃s)

R̄
k2

]
, (C.38)

while for the second choice, �2, one obtains

Trs = kD

(4π)D/2

∫
y

[ (
2 − 3d−2+α

d−1 λ
)

×
(
q1
D/2(w̃s) − 5d−24+6α

6d q1
D/2−1(w̃s)

R̄
k2

)

+ 1
d

(
d2−10d+8+(3d−2)α

2(d−1)
− 2 d2−10d+8+(4d−6)α+α2

d−1 λ

+ 2d3−22d2+36d−16+(10d2−34d+20)α+(7d−8)α2+α3

(d−1)2 λ2
)

× q2
D/2(w̃s)

R̄
k2

]
. (C.39)

This result completes the evaluation of the operator traces
appearing in the gravitational sector.

Appendix C.2.3: Ghost contributions

In the ghost sector all threshold functions are evaluated at zero
argument and there are no terms containing η. The explicit
contributions of the traces are given by

− Trc̄c = − kD

(4π)D/2

∫
y

[
2 �1

D/2 + 1
3 �1

D/2−1
R̄
k2

]
, (C.40)

−Trb̄b = − kD

(4π)D/2

∫
y

[
2d �1

D/2 + ( 1
3d + 2r

)
�1

D/2−1
R̄
k2

+ 2 (1 − r)�2
D/2

R̄
k2

]
. (C.41)

Together with Eqs. (C.33), (C.34), and (C.35), this result
completes the evaluation of all traces appearing on the right-
hand-side of the FRGE.

References

1. J. Biemans, A. Platania, F. Saueressig, Phys. Rev. D 95, 086013
(2017). arXiv:1609.04813

2. J. Biemans, A. Platania JHEP 1705, 093, F. Saueressig, (2017).
arXiv:1702.06539 [hep-th]

3. S. Weinberg, in General Relativity, an Einstein Centenary Survey,
eds by S.W. Hawking, W. Israel, (Cambridge University Press,
1979)

4. S. Weinberg, in Conceptual foundations of quantum field theory,
ed by T.Y. Cao, (Cambridge University Press, Cambridge, 1999).
arXiv:hep-th/9702027

5. D. Oriti (ed.), Approaches to Quantum Gravity: Toward a New
Understanding of Space, Time andMatter (Cambridge Univ. Press,
Cambridge, 2009)

6. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, Phys. Rep. 519, 127
(2012). arXiv:1203.3591

7. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 100,
091304 (2008). arXiv:0712.2485

8. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, Phys. Rev. D 78,
063544 (2008). arXiv:0807.4481

9. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, Phys. Lett. B 690,
420 (2010). arXiv:1001.4581

10. J. Ambjørn, Z. Drogosz, J. Gizbert-Studnicki, A. Görlich, J.
Jurkiewicz, D. Nemeth, Phys. Rev. D 94, 044010 (2016).
arXiv:1604.08786

11. J. Smit, JHEP 08 016, (2013). arXiv:1304.6339 [Erratum: JHEP
09 (2015) 048]

12. J. Ambjørn, L. Glaser, A. Görlich, J. Jurkiewicz, JHEP 1310, 100
(2013). arXiv:1307.2270

13. T. Rindlisbacher, P. de Forcrand, JHEP 1505, 138 (2015).
arXiv:1503.03706

14. J. Laiho, S. Bassler, D. Coumbe, D. Du, J. T. Neelakanta,
arXiv:1604.02745

15. J. Ambjørn, S. Jordan, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 107,
211303 (2011). arXiv:1108.3932

16. J. Ambjørn, J. Gizbert-Studnicki, A. Görlich, J. Jurkiewicz, N. Klit-
gaard, R. Loll, Eur. Phys. J. C 77, 152 (2017). arXiv:1610.05245

17. J. Ambjørn, S. Jordan, J. Jurkiewicz, R. Loll, Phys. Rev. D 85,
124044 (2012). arXiv:1205.1229

18. J. Ambjørn, A. Görlich, J. Jurkiewicz, A. Kreienbuehl, R. Loll,
Class. Quantum Gravity 31, 165003 (2014). arXiv:1405.4585

123

http://arxiv.org/abs/1609.04813
http://arxiv.org/abs/1702.06539
http://arxiv.org/abs/hep-th/9702027
http://arxiv.org/abs/1203.3591
http://arxiv.org/abs/0712.2485
http://arxiv.org/abs/0807.4481
http://arxiv.org/abs/1001.4581
http://arxiv.org/abs/1604.08786
http://arxiv.org/abs/1304.6339
http://arxiv.org/abs/1307.2270
http://arxiv.org/abs/1503.03706
http://arxiv.org/abs/1604.02745
http://arxiv.org/abs/1108.3932
http://arxiv.org/abs/1610.05245
http://arxiv.org/abs/1205.1229
http://arxiv.org/abs/1405.4585


Eur. Phys. J. C   (2017) 77:491 Page 17 of 17  491 

19. J. Ambjørn, D.N. Coumbe, J. Gizbert-Studnicki, J. Jurkiewicz,
Phys. Rev. D 93, 104032 (2016). arXiv:1603.02076

20. J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 93, 131301
(2004). arXiv:hep-th/0404156

21. J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 95, 171301
(2005). arXiv:hep-th/0505113

22. J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. D 72, 064014 (2005).
arXiv:hep-th/0505154

23. M. Niedermaier, M. Reuter, Living Rev. Relativ. 9, 5 (2006)
24. A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009).

arXiv:0805.2909
25. D.F. Litim, Philos. Trans. R. Soc. Lond. A 369, 2759 (2011).

arXiv:1102.4624
26. R. Percacci, arXiv:1110.6389
27. M. Reuter, F. Saueressig, New J. Phys. 14, 055022 (2012).

arXiv:1202.2274
28. S. Nagy, Ann. Phys. 350, 310 (2014). arXiv:1211.4151
29. C. Wetterich, Phys. Lett. B 301, 90 (1993)
30. T.R. Morris, Int. J. Mod. Phys. A 9, 2411 (1994).

arXiv:hep-ph/9308265
31. M. Reuter, C. Wetterich, Nucl. Phys. B 417, 181 (1994)
32. M. Reuter, Phys. Rev. D 57, 971 (1998). arXiv:hep-th/9605030
33. W. Souma, Prog. Theor. Phys. 102, 181 (1999).

arXiv:hep-th/9907027
34. O. Lauscher, M. Reuter, Phys. Rev. D 65, 025013 (2001).

arXiv:hep-th/0108040
35. M. Reuter, F. Saueressig, Phys. Rev. D 65, 065016 (2002).

arXiv:hep-th/0110054
36. D.F. Litim, Phys. Rev. Lett. 92, 201301 (2004).

arXiv:hep-th/0312114
37. I. Donkin, J. M. Pawlowski, arXiv:1203.4207
38. S. Nagy, B. Fazekas, L. Juhasz, K. Sailer, Phys. Rev. D 88, 116010

(2013). arXiv:1307.0765
39. H. Gies, B. Knorr, S. Lippoldt, Phys. Rev. D 92, 084020 (2015).

arXiv:1507.08859
40. O. Lauscher, M. Reuter, Phys. Rev. D 66, 025026 (2002).

arXiv:hep-th/0205062
41. A. Codello, R. Percacci, C. Rahmede, Int. J. Mod. Phys. A 23, 143

(2008). arXiv:0705.1769
42. P.F. Machado, F. Saueressig, Phys. Rev. D 77, 124045 (2008).

arXiv:0712.0445
43. S. Rechenberger, F. Saueressig, Phys. Rev. D 86, 024018 (2012).

arXiv:1206.0657
44. K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, Phys. Rev.

D 93, 104022 (2016). arXiv:1410.4815
45. K. Falls, N. Ohta, Phys. Rev. D 94, 084005 (2016).

arXiv:1607.08460
46. D. Benedetti, P.F. Machado, F. Saueressig, Nucl. Phys. B 824, 168

(2010). arXiv:0902.4630
47. H. Gies, B. Knorr, S. Lippoldt, F. Saueressig, Phys. Rev. Lett. 116,

211302 (2016). arXiv:1601.01800
48. E. Manrique, M. Reuter, Ann. Phys. 325, 785 (2010).

arXiv:0907.2617
49. E. Manrique, M. Reuter, F. Saueressig, Ann. Phys. 326, 440 (2011).

arXiv:1003.5129
50. E. Manrique, M. Reuter, F. Saueressig, Ann. Phys. 326, 463 (2011).

arXiv:1006.0099
51. N. Christiansen, D.F. Litim, J.M. Pawlowski, A. Rodigast, Phys.

Lett. B 728, 114 (2014). arXiv:1209.4038
52. A. Codello, Phys. Rev. D91, 065032 (2015). arXiv:1304.2059

53. A. Codello, G. D’Odorico, C. Pagani, Phys. Rev. D 89, 081701
(2014). arXiv:1304.4777

54. N. Christiansen, B. Knorr, J.M. Pawlowski, A. Rodigast, Phys. Rev.
D 93, 044036 (2016). arXiv:1403.1232

55. D. Becker, M. Reuter, JHEP 12, 025 (2014). arXiv:1407.5848
56. D. Becker, M. Reuter, JHEP 03, 065 (2015). arXiv:1412.0468
57. N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski, M.

Reichert, Phys. Rev. D 92, 121501 (2015). arXiv:1506.07016
58. P. Labus, T.R. Morris, Z.H. Slade, Phys. Rev. D 94, 024007 (2016).

arXiv:1603.04772
59. T.R. Morris, JHEP 11, 160 (2016). arXiv:1610.03081
60. R. Percacci, G.P. Vacca, Eur. Phys. J. C 77(1), 52 (2017). doi:10.

1140/epjc/s10052-017-4619-x. arXiv:1611.07005 [hep-th]
61. T. Denz, J. M. Pawlowski, M. Reichert, arXiv:1612.07315 [hep-th]
62. M. Demmel, F. Saueressig, O. Zanusso, Ann. Phys. 359, 141

(2015). arXiv:1412.7207
63. N. Ohta, R. Percacci, A.D. Pereira, JHEP 1606, 115 (2016).

arXiv:1605.00454
64. N. Ohta, R. Percacci, A. D. Pereira, arXiv:1610.07991
65. K. Falls, arXiv:1702.03577
66. O. Zanusso, L. Zambelli, G.P. Vacca, R. Percacci, Phys. Lett. B

689, 90 (2010). arXiv:0904.0938
67. M. Shaposhnikov, C. Wetterich, Phys. Lett. B 683, 196 (2010).

arXiv:0912.0208
68. U. Harst, M. Reuter, JHEP 05, 119 (2011). arXiv:1101.6007
69. P. Dona, A. Eichhorn, R. Percacci, Phys. Rev. D 89, 084035 (2014).

arXiv:1311.2898
70. K.Y. Oda, M. Yamada, Class. Quantum Gravity 33, 125011 (2016).

arXiv:1510.03734
71. J. Meibohm, J.M. Pawlowski, M. Reichert, Phys. Rev. D93, 084035

(2016). arXiv:1510.07018
72. A. Eichhorn, A. Held, J.M. Pawlowski, Phys. Rev. D 94, 104027

(2016). arXiv:1604.02041
73. M. Reuter, F. Saueressig, JHEP 12, 012 (2011). arXiv:1110.5224
74. E. Poisson,ARelativist’s Toolkit: TheMath of Black HoleMechan-

ics (Cambridge Univ. Press, Cambridge, 2004)
75. E. Manrique, S. Rechenberger, F. Saueressig, Phys. Rev. Lett. 106,

251302 (2011). arXiv:1102.5012
76. S. Rechenberger, F. Saueressig, JHEP 03, 010 (2013).

arXiv:1212.5114
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