1,313 research outputs found

    Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile

    Get PDF
    In industry Escherichia coli is the preferred host system for the heterologous biosynthesis of therapeutic proteins that do not need posttranslational modifications. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of a therapeutic hormone is described. The strategy is to guide the process along a predefined profile of the total biomass that was derived from a given specific growth rate profile. This profile might have been built upon experience or derived from numerical process optimization. A surprisingly simple adaptive procedure correcting for deviations from the desired path was developed. In this way the batch-to-batch reproducibility can be drastically improved as compared to the process control strategies typically applied in industry. This applies not only to the biomass but, as the results clearly show, to the product titer also

    Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings

    Get PDF
    A simple, low-cost and versatile holographic method to produce reusable surface-relief gratings on dichromated poly(vinyl alcohol) (DCPVA) films, with periods Λ ≥ 270 nm and modulation depths up to 300 nm, is reported. DCPVA presents processing advantages with respect to other photoresists, such as dichromated gelatine, i.e. higher light sensitivity, simpler fabrication process and better batch to batch reproducibility. The successful use of these DCPVA relief gratings as distributed feedback (DFB) laser resonators is demonstrated. Second-order DFB devices emitting in the wavelength range 577-614 nm have been easily prepared by coating a dye-doped polymer film on top of the resonators.We thank the Spanish Government (MINECO) and the European Union (FEDER) for grant no. MAT2011-28167-C02

    Regulatory aspects and quality controls of polymer-based parenteral long-acting drug products: the challenge of approving copies

    Get PDF
    To assure the safety and the efficacy of a medicinal product, quality and batch-to-batch reproducibility need to be guaranteed. In the case of parenteral long-acting products, the European Union (EU) and US Regulatory Authorities provide different indications, from the classification to the in vitro release assays related to such products. Despite their relevance, there are few in vitro experimental set-ups enabling researchers to discriminate among products with different in vivo behavior. Consequently, most copies are authorized through hybrid instead of generic applications. Here, we review the actual regulatory frameworks to evaluate the in vitro release tests of polymer-based long-acting parenterals to highlights the directions followed by the Regulatory Agencies in the USA and EU

    Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability

    Full text link
    Electrochromic technology has been actively researched for displays, adjustable mirrors, smart windows, and other cutting-edge applications. However, it has never been proposed to overcome the critical problems in the field of surface-enhanced Raman scattering (SERS). Herein, we demonstrate a generic electrochromic strategy for ensuring the reproducibility and renewability of SERS substrates, which are both scientifically and technically important due to the great need for quantitative analysis, standardized production and low cost in SERS. This color-changing strategy is based on a unique quantitative relationship between the SERS signal amplification and the coloration degree within a certain range, in which the SERS activity of the substrate can be effectively inferred by judging the degree of color change. Our results may provide a first step toward the rational design of electrochromic SERS substrates with a high sensitivity, reproducibility, and renewability

    Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy

    Get PDF
    Taking a nanoparticle (NP) from discovery to clinical translation has been slow compared to small molecules, in part by the lack of systems that enable their precise engineering and rapid optimization. In this work we have developed a microfluidic platform for the rapid, combinatorial synthesis and optimization of NPs. The system takes in a number of NP precursors from which a library of NPs with varying size, surface charge, target ligand density, and drug load is produced in a reproducible manner. We rapidly synthesized 45 different formulations of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) NPs of different size and surface composition and screened and ranked the NPs for their ability to evade macrophage uptake in vitro. Comparison of the results to pharmacokinetic studies in vivo in mice revealed a correlation between in vitro screen and in vivo behavior. Next, we selected NP synthesis parameters that resulted in longer blood half-life and used the microfluidic platform to synthesize targeted NPs with varying targeting ligand density (using a model targeting ligand against cancer cells). We screened NPs in vitro against prostate cancer cells as well as macrophages, identifying one formulation that exhibited high uptake by cancer cells yet similar macrophage uptake compared to nontargeted NPs. In vivo, the selected targeted NPs showed a 3.5-fold increase in tumor accumulation in mice compared to nontargeted NPs. The developed microfluidic platform in this work represents a tool that could potentially accelerate the discovery and clinical translation of NPs.Prostate Cancer Foundation (Award in Nanotherapeutics)National Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence at MIT-Harvard U54-CA151884National Heart, Lung, and Blood Institute (Programs of Excellence in Nanotechnology HHSN268201000045C)National Science Foundation (U.S.). Graduate Research FellowshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence. Graduate Research Fellowship

    Propolis Standardized Extract (EPP-AF®), an Innovative Chemically and Biologically Reproducible Pharmaceutical Compound for Treating Wounds

    Get PDF
    The aim of this study was to develop a formulation, containing the propolis standardized extract (EPP-AF®), which can assist in the healing of skin lesions. To achieve this objective the antimicrobial activity and chemical composition of the propolis extract was determined. The final product was subjected to in vitro and in vivo pre-clinical evaluation. The broth macrodilution method was used to determine the antimicrobial activity of the extracts and formulations against the microorganisms most commonly found in burns, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. Wistar rats with puncture wounded skin were used to evaluate the wound healing properties of propolis. The results of chemical and biological characterization demonstrated the batch-to-batch reproducibility of the standardized extract which is an unprecedented result. The antimicrobial and wound healing activity of the pharmaceutical studied showed the best results when samples contain 3.6% propolis, suggesting that this is the most promising composition

    Traditional Knowledge and Biodiversity in South Africa : CSIR case

    Get PDF
    The focus of this paper is traditional knowledge (TK) and indigenous biological resources protection in South Africa, through the analysis of the existing policies and legislations, in order to provide a useful insight for a developed country such as Japan which has recently adopted the guidelines for the protection of TK and biological resources and promotion of access and benefit sharing (ABS). South Africa is the 3rd most diverse country in terms of natural resources, culture and traditions, languages and geology and its comprehensive legislative framework system shows the country\u27s seriousness to safeguard TK and conserve biological resources for future generations. The paper uses the South Africa\u27s government owned research and technology development institution, Council for Scientific and Industrial Research (CSIR), as an example to demonstrate the application of the TK protection and biodiversity conservation (including access and benefit sharing) laws, through case studies approach for lessons learned for other African countries, contemplating creation of their own TK protection and environmental conservation. Due to the repositioning of CSIR within the local and global research and develop, the organisation has adopted Industrialisation Strategy, and TK will play a significant role in technology development and new business models in rural agroprocessing and production to enhance inclusive development (through benefit sharing) and support economic growth. The paper concludes that TK and indigenous biological resources protection through the relevant government laws, as well as value addition to TK and biodiversity through research and development supported by government funding, is necessary for socioeconomic attainment, especially for local and indigenous communities and rural agroprocessing businesses as part of benefit sharing

    Tuning retention and selectivity in reversed-phase liquid chromatography by using functionalized multi-walled carbon nanotubes

    Get PDF
    Aim of this work was to explore the possibility of retention and selectivity tuning in reversed-phase liquid chromatography by means of chemically modified multi-walled carbon nanotubes (MWCNTs). These were synthesized by derivatizing pristine MWCNTs with amino-terminated alkyl chains containing polar embedded groups. A novel hybrid material based on functionalized MWCNTs (MWCNTs-R-NH2) was prepared, characterized and tested. The idea was to design a mixed-mode separation medium basing its sorption properties on the peculiar characteristics of MWCNTs combined with the chemical interactions provided by the functional chains introduced on the nanotube skeleton. MWCNTs-R-NH2 were easily grafted to silica microspheres by gamma radiation (using a 60Co source) in the presence of polybutadiene as the linking agent. The composite was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) analysis in terms of structural morphology, surface area and porosity. The MWCNTs-R-NH2 sorbent was tested as stationary phase. The reversed-phase behaviour was first proved by analysis of alkylbenzenes, while the key role of CNT derivatization in addressing the selectivity/affinity towards the solutes was evidenced by testing three classes of analytes, viz. barbiturates, steroid hormones and alkaloids. These compounds, with different molecular structure and polarity, were here analysed for the first time on CNT-based LC stationary phases. The behaviour of the novel sorbent was compared in terms of retention capability and resolution with that observed using unmodified MWCNTs, pointing out the mixed-mode characteristics of the MWCNTs-R-NH2 material. The same test mixtures were analysed also on a conventional mono-modal separation sorbent (C18) to highlight the particular behaviour of the (derivatized)MWCNTs-based stationary phases. The novel material showed better performance in separation of polar compounds, i.e. barbiturates and alkaloids, than the unmodified MWCNTs and than the C18 column. Results showed that MWCNT functionalization is powerful to modulate retention/selectivity in reversed-phase liquid chromatography. Keywords: Functionalized carbon nanotubes, Liquid chromatography, Mixed-mode stationary phase

    Efficient bioactive oligonucleotide-protein conjugation for cell-targeted cancer therapy

    Get PDF
    Oligonucleotide-protein conjugates have important applications in biomedicine. Simple and efficient methods are described for the preparation of these conjugates. Specifically, we describe a new method in which a bifunctional linker is attached to thiol-oligonucleotide to generate a reactive intermediate that is used to link to the protein. Having similar conjugation efficacy compared with the classical method in which the bifunctional linker is attached first to the protein, this new approach produces significantly more active conjugates with higher batch to batch reproducibility. In a second approach, direct conjugation is proposed using oligonucleotides carrying carboxyl groups. These methodologies have been applied to prepare nanoconjugates of an engineered nanoparticle protein carrying a T22 peptide with affinity for the CXCR4 chemokine receptor and oligomers of the antiproliferative nucleotide 2'-deoxy-5-fluorouridine in a very efficient way. The protocols have potential uses for the functionalization of proteins, amino-containing polymers or amino-lipids in order to produce complex therapeutic nucleic acid delivery system
    corecore