167 research outputs found

    Transcript profiling for early stages during embryo development in Scots pine

    Get PDF
    Background: Characterization of the expression and function of genes regulating embryo development in conifers is interesting from an evolutionary point of view. However, our knowledge about the regulation of embryo development in conifers is limited. During early embryo development in Pinus species the proembyo goes through a cleavage process, named cleavage polyembryony, giving rise to four embryos. One of these embryos develops to a dominant embryo, which will develop further into a mature, cotyledonary embryo, while the other embryos, the subordinate embryos, are degraded. The main goal of this study has been to identify processes that might be important for regulating the cleavage process and for the development of a dominant embryo. Results: RNA samples from embryos and megagametophytes at four early developmental stages during seed development in Pinus sylvestris were subjected to high-throughput sequencing. A total of 6.6 million raw reads was generated, resulting in 121,938 transcripts, out of which 36.106 contained ORFs. 18,638 transcripts were differentially expressed (DETs) in embryos and megagametophytes. GO enrichment analysis of transcripts up-regulated in embryos showed enrichment for different cellular processes, while those up-regulated in megagametophytes were enriched for accumulation of storage material and responses to stress. The highest number of DETs was detected during the initiation of the cleavage process. Transcripts related to embryogenic competence, cell wall modifications, cell division pattern, axis specification and response to hormones and stress were highly abundant and differentially expressed during early embryo development. The abundance of representative DETs was confirmed by qRT-PCR analyses. Conclusion: Based on the processes identified in the GO enrichment analyses and the expression of the selected transcripts we suggest that (i) processes related to embryogenic competence and cell wall loosening are involved in activating the cleavage process; (ii) apical-basal polarization is strictly regulated in dominant embryos but not in the subordinate embryos; (iii) the transition from the morphogenic phase to the maturation phase is not completed in subordinate embryos. This is the first genome-wide transcript expression profiling of the earliest stages during embryo development in a Pinus species. Our results can serve as a framework for future studies to reveal the functions of identified genes

    High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus

    Get PDF
    <p><b>Abstract</b></p> <p>Background</p> <p><it>Salix </it>(willow) and <it>Populus </it>(poplar) are members of the Salicaceae family and they share many ecological as well as genetic and genomic characteristics. The interest of using willow for biomass production is growing, which has resulted in increased pressure on breeding of high yielding and resistant clones adapted to different environments. The main purpose of this work was to develop dense genetic linkage maps for mapping of traits related to yield and resistance in willow. We used the <it>Populus trichocarpa </it>genome to extract evenly spaced markers and mapped the orthologous loci in the willow genome. The marker positions in the two genomes were used to study genome evolution since the divergence of the two lineages some 45 mya.</p> <p>Results</p> <p>We constructed two linkage maps covering the 19 linkage groups in willow. The most detailed consensus map, S<sub>1</sub>, contains 495 markers with a total genetic distance of 2477 cM and an average distance of 5.0 cM between the markers. The S<sub>3 </sub>consensus map contains 221 markers and has a total genetic distance of 1793 cM and an average distance of 8.1 cM between the markers. We found high degree of synteny and gene order conservation between willow and poplar. There is however evidence for two major interchromosomal rearrangements involving poplar LG I and XVI and willow LG Ib, suggesting a fission or a fusion in one of the lineages, as well as five intrachromosomal inversions. The number of silent substitutions were three times lower (median: 0.12) between orthologs than between paralogs (median: 0.37 - 0.41).</p> <p>Conclusions</p> <p>The relatively slow rates of genomic change between willow and poplar mean that the genomic resources in poplar will be most useful in genomic research in willow, such as identifying genes underlying QTLs of important traits. Our data suggest that the whole-genome duplication occurred long before the divergence of the two genera, events which have until now been regarded as contemporary. Estimated silent substitution rates were 1.28 × 10<sup>-9 </sup>and 1.68 × 10<sup>-9 </sup>per site and year, which are close to rates found in other perennials but much lower than rates in annuals.</p

    Comparison of standard exponential and linear techniques to amplify small cDNA samples for microarrays

    Get PDF
    BACKGROUND: The need to perform microarray experiments with small amounts of tissue has led to the development of several protocols for amplifying the target transcripts. The use of different amplification protocols could affect the comparability of microarray experiments. RESULTS: Here we compare expression data from Pinus taeda cDNA microarrays using transcripts amplified either exponentially by PCR or linearly by T7 transcription. The amplified transcripts vary significantly in estimated length, GC content and expression depending on amplification technique. Amplification by T7 RNA polymerase gives transcripts with a greater range of lengths, greater estimated mean length, and greater variation of expression levels, but lower average GC content, than those from PCR amplification. For genes with significantly higher expression after T7 transcription than after PCR, the transcripts were 27% longer and had about 2 percentage units lower GC content. The correlation of expression intensities between technical repeats was high for both methods (R(2 )= 0.98) whereas the correlation of expression intensities using the different methods was considerably lower (R(2 )= 0.52). Correlation of expression intensities between amplified and unamplified transcripts were intermediate (R(2 )= 0.68–0.77). CONCLUSION: Amplification with T7 transcription better reflects the variation of the unamplified transcriptome than PCR based methods owing to the better representation of long transcripts. If transcripts of particular interest are known to have high GC content and are of limited length, however, PCR-based methods may be preferable

    The year out

    Get PDF
    Figure S5. Distribution of up-regulated TF family members in embryos and megagametophytes. Presented data are based on TF family members differentially accumulated (FC > 2) during seed development in any of the pairwise comparisons between embryos and megagametophytes. Orange bars show the number of TFs belonging to each family in embryos and green bars in megagametophytes. TFs were classified into TF families by using the publicly available PlantTFDB v 3.0 database. Figure S6. Abundance of the ten largest TF families differentially expressed between embryos and megagametophytes during seed development shown in Fig. 5. Number of members in each TF family detected at different developmental stages in (A) embryos and (B) megagametophytes. Subordinate embryos were excluded from this analysis. (PDF 312 kb

    Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies)

    Get PDF
    Establishment of the shoot apical meristem (SAM) in Arabidopsis embryos requires the KNOXI transcription factor SHOOT MERISTEMLESS. In Norway spruce (Picea abies), four KNOXI family members (HBK1, HBK2, HBK3 and HBK4) have been identified, but a corresponding role in SAM development has not been demonstrated. As a first step to differentiate between the functions of the four Norway spruce HBK genes, we have here analyzed their expression profiles during the process of somatic embryo development. This was made both under normal embryo development and under conditions of reduced SAM formation by treatment with the polar auxin transport inhibitor NPA. Concomitantly with the formation of an embryonic SAM, the HBK2 and HBK4 genes displayed a significant up-regulation that was delayed by NPA treatment. In contrast, HBK1 and HBK3 were up-regulated prior to SAM formation, and their temporal expression was not affected by NPA. Ectopic expression of the four HBK genes in transgenic Arabidopsis plants further supported similar functions of HBK2 and HBK4, distinct from those of HBK1 and HBK3. Together, the results suggest that HBK2 and HBK4 exert similar functions related to the SAM differentiation and somatic embryo development in Norway spruce, while HBK1 and HBK3 have more general functions during embryo development

    Prevalence of renal impairment and its association with cardiovascular risk factors in a general population: results of the Swiss SAPALDIA study

    Get PDF
    Background. Impaired renal function is evolving as an independent marker of the risk of cardiovascular morbidity and mortality. Little is known about the prevalence of impaired renal function and its relationship to cardiovascular risk factors in the Swiss general population. Methods. SAPALDIA comprises a random sample of the Swiss population established in 1991, originally to investigate the health effects of long-term exposure to air pollution. Participants were reassessed in 2002/3 and blood measurements were obtained (n = 6317). Renal function was estimated using the Cockcroft-Gault equation and the modified MDRD (four-component) equation incorporating age, race, gender and serum creatinine level. Results. The estimated prevalence of impaired renal function [estimated glomerular filtration rate <60 ml/min/1.73 m2] differed substantially between men and women, particularly at higher ages, and amounted to 13% [95% confidence interval (CI) 10-16%] and 36% (95% CI 32-40%) in men and women, respectively, of 65 years or older. Smoking, obesity, blood lipid levels, high systolic blood pressure and hyperuricaemia were all more common in men when compared with women. These cardiovascular risk factors were also associated independently with creatinine in both women and men. Women were less likely to receive cardiovascular drugs, in particular angiotensin-converting enzyme inhibitors and β-blockers, when compared with men of the same age. Conclusion. Moderate renal impairment seems to be prevalent in the general population, with an apparent excess in females which is not explained by conventional cardiovascular risk factors. The unexpected finding questions the validity of the prediction equations, in particular in female

    Heterologous Array Analysis in Pinaceae: Hybridization of Pinus Taeda cDNA Arrays With cDNA From Needles and Embryogenic Cultures of P. Taeda, P. Sylvestris or Picea Abies

    Get PDF
    Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few conifer cDNA libraries have been sequenced. Because of the high level of sequence conservation between Pinus and Picea we have investigated the use of arrays from one genus for studies of gene expression in the other. The partial cDNAs from 384 identifiable genes expressed in differentiating xylem of Pinus taeda were printed on nylon membranes in randomized replicates. These were hybridized with labelled cDNA from needles or embryogenic cultures of Pinus taeda, P. sylvestris and Picea abies, and with labelled cDNA from leaves of Nicotiana tabacum. The Spearman correlation of gene expression for pairs of conifer species was high for needles (r2 = 0.78 − 0.86), and somewhat lower for embryogenic cultures (r2 = 0.68 − 0.83). The correlation of gene expression for tobacco leaves and needles of each of the three conifer species was lower but sufficiently high (r2 = 0.52 − 0.63) to suggest that many partial gene sequences are conserved in angiosperms and gymnosperms. Heterologous probing was further used to identify tissue-specific gene expression over species boundaries. To evaluate the significance of differences in gene expression, conventional parametric tests were compared with permutation tests after four methods of normalization. Permutation tests after Z-normalization provide the highest degree of discrimination but may enhance the probability of type I errors. It is concluded that arrays of cDNA from loblolly pine are useful for studies of gene expression in other pines or spruces

    Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor

    Get PDF
    Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISICACID3 (ABI3) and its Zeamays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers
    corecore