10 research outputs found

    Assessment of holographic microscopy for quantifying marine particle size and concentration

    Get PDF
    Holographic microscopy has emerged as a tool for in situ imaging of microscopic organisms and other particles in the marine environment: appealing because of the relatively larger sampling volume and simpler optical configuration compared to other imaging systems. However, its quantitative capabilities have so far remained uncertain, in part because hologram reconstruction and image recognition have required manual operation. Here, we assess the quantitative skill of our automated hologram processing pipeline (CCV Pipeline), to evaluate the size and concentration measurements of environmental and cultured assemblages of marine plankton particles, and microspheres. Over 1 million particles, ranging from 10 to 200 μm in equivalent spherical diameter, imaged by the 4‐Deep HoloSea digital inline holographic microscope (DIHM) are analyzed. These measurements were collected in parallel with a FlowCam (FC), Imaging FlowCytobot (IFCB), and manual microscope identification. Once corrections for particle location and nonuniform illumination were developed and applied, the DIHM showed an underestimate in ESD of about 3% to 10%, but successfully reproduced the size spectral slope from environmental samples, and the size distribution of cultures (Dunaliella tertiolecta, Heterosigma akashiwo, and Prorocentrum micans) and microspheres. DIHM concentrations (order 1 to 1000 particles ml−1) showed a linear agreement (r2 = 0.73) with the other instruments, but individual comparisons at times had large uncertainty. Overall, we found the DIHM and the CCV Pipeline required extensive manual correction, but once corrected, provided concentration and size estimates comparable to the other imaging systems assessed in this study. Holographic cameras are mechanically simple, autonomous, can operate at very high pressures, and provide a larger sampling volume than comparable lens‐based tools. Thus, we anticipate that these characterization efforts will be rewarded with novel discovery in new oceanic environments

    Biomarker Pigment Divinyl Chlorophyll a as a Tracer of Water Masses?

    Get PDF
    The ecological preferences of different Phytoplankton types drive their temporal and spatial distributions, reflecting their dependence on certain temperature ranges, light levels, nutrient availability and other environmental gradients. Hence, some phytoplankton taxa can be used as water mass tracers (biotracers)

    The essentials of marine biotechnology.

    Get PDF
    Coastal countries have traditionally relied on the existing marine resources (e.g., fishing, food, transport, recreation, and tourism) as well as tried to support new economic endeavors (ocean energy, desalination for water supply, and seabed mining). Modern societies and lifestyle resulted in an increased demand for dietary diversity, better health and well-being, new biomedicines, natural cosmeceuticals, environmental conservation, and sustainable energy sources. These societal needs stimulated the interest of researchers on the diverse and underexplored marine environments as promising and sustainable sources of biomolecules and biomass, and they are addressed by the emerging field of marine (blue) biotechnology. Blue biotechnology provides opportunities for a wide range of initiatives of commercial interest for the pharmaceutical, biomedical, cosmetic, nutraceutical, food, feed, agricultural, and related industries. This article synthesizes the essence, opportunities, responsibilities, and challenges encountered in marine biotechnology and outlines the attainment and valorization of directly derived or bio-inspired products from marine organisms. First, the concept of bioeconomy is introduced. Then, the diversity of marine bioresources including an overview of the most prominent marine organisms and their potential for biotechnological uses are described. This is followed by introducing methodologies for exploration of these resources and the main use case scenarios in energy, food and feed, agronomy, bioremediation and climate change, cosmeceuticals, bio-inspired materials, healthcare, and well-being sectors. The key aspects in the fields of legislation and funding are provided, with the emphasis on the importance of communication and stakeholder engagement at all levels of biotechnology development. Finally, vital overarching concepts, such as the quadruple helix and Responsible Research and Innovation principle are highlighted as important to follow within the marine biotechnology field. The authors of this review are collaborating under the European Commission-funded Cooperation in Science and Technology (COST) Action Ocean4Biotech – European transdisciplinary networking platform for marine biotechnology and focus the study on the European state of affairs

    Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems

    No full text
    Background: Phytoplankton is the base of majority of ocean ecosystems. It is respon-sible for half of the global primary production, and different phytoplankton taxa have a unique role in global biogeochemical cycles. In addition, phytoplankton abundance and diversity are highly susceptible to climate induced changes, hence monitoring of phytoplankton and its diversity is important and necessary. Methods: Water samples for phytoplankton and photosynthetic pigment analyses were collected in boreal winter 2017, along transect in the North Pacific Subtropical Gyre (NPSG) and the California Current System (CCS). Phytoplankton community was analyzed using light and scanning electron microscopy and photosynthetic pigments by high-performance liquid chromatography. To describe distinct ecosystems, monthly average satellite data of MODIS Aqua Sea Surface temperature and Chlorophyll a concentration, as well as Apparent Visible Wavelength were used. Results: A total of 207 taxa have been determined, mostly comprised of coccol-ithophores (35.5%), diatoms (25.2%) and dinoflagellates (19.5%) while cryptophytes, phytoflagellates and silicoflagellates were included in the group "others" (19.8%). Phytoplankton spatial distribution was distinct, indicating variable planktonic dispersal rates and specific adaptation to ecosystems. Dinoflagellates, and nano-scale coccol-ithophores dominated NPSG, while micro-scale diatoms, and cryptophytes prevailed in CCS. A clear split between CCS and NPSG is evident in dendogram visualising LINK -TREE constrained binary divisive clustering analysis done on phytoplankton counts and pigment concentrations. Of all pigments determined, alloxanthin, zeaxanthin, divinyl chlorophyll b and lutein have highest correlation to phytoplankton counts. Conclusion: Combining chemotaxonomy and microscopy is an optimal method to determine phytoplankton diversity on a large-scale transect. Distinct communities between the two contrasting ecosystems of North Pacific reveal phytoplankton groups specific adaptations to trophic state, and support the hypothesis of shift from micro -to nano-scale taxa due to sea surface temperatures rising, favoring stratification and oligotrophic conditions

    Phytoplankton size structure and species composition as an indicator of trophic status in transitional ecosystems: the case study of a Mediterranean fjord-like karstic bay

    No full text
    The species composition and size-structure of the phytoplanktoncommunity in the Boka Kotorska Bay (SE Adriatic Sea) were analysed withrespect to abundance and carbon biomass, together with the physico-chemicalparameters, with the aim of evaluating the predefined oligo-mesotrophicstatus of this transitional water ecosystem. Three stations locatedin the inner part of the Bay were sampled with seasonal frequencyin 2008/2009. Picophytoplankton cells were counted using flowcytometry; nanophytoplankton and microphytoplankton were identifiedand counted by light microscopy. The relative importance of thepicoplankton in the Bay, in terms of both abundance and biomass,during all the investigated seasons emphasized their significancein the phytoplankton community. Picocyanobacteria (Synechococcus)constituted a significant part of the summer assemblages withregard to both abundance (up to 3.38 × 108 cellsL-1)and carbon biomass (up to 73% of total phytoplankton carbon).The contribution of the nanophytoplankton was found to be generallylow (Skeletonema marinoi, dominated the microphytoplanktonfraction. S. marinoi was the most abundant in spring/winter(up to 2.86 imes 106 cells L-1) above the halocline(making a 96% contribution to the microphytoplankton). The potentiallytoxin-producing diatom Pseudo-nitzschia pseudodelicatissimawas recorded at abundances greater than 105 cells L-1, togetherwith Thalassionema frauenfeldii, as well as the dinoflagellatesProrocentrummicans and the potentially harmful P. minimum. The higher valuesof phytoplankton biomass and the dominance of phytoplankton speciesor groups with preferences for nutrient-enriched conditions appear tobe consistent with the oligo-mesotrophic status of this specific ecosystem

    Multilayer Approach for Characterization of Bacterial Diversity in a Marginal Sea: From Surface to Seabed

    No full text
    Bacteria are the most important microorganisms in the world oceans, accounting for up to 75% of the total biomass. They are responsible for fundamental biogeochemical processes and therefore often used as ecological indicators. In this study, bacteria were quantified by flow cytometry and their diversity assessed by High Throughput Sequencing (HTS) in the southern Adriatic Sea. The most abundant bacterial groups were also quantified by qPCR. The samples were collected from the surface to the seabed over a total of 16 different depths at four stations during the late winter BIOTA (BIO-Tracing Adriatic water masses) cruise conducted in March 2016. The investigated area showed unusual water mass properties and was characterized by a shallow mixed layer, which differed from the usual winter convection conditions, typical of middle-altitude ecosystems and important for the seasonal picoplankton dynamics of this area. Heterotrophic bacteria were separated into HNA (relative High Nucleic Acid content) and LNA (Low Nucleic Acid content) subpopulations with abundances up to 1.810(exp 5) and 8.810(exp 5) cells/mL, respectively. HNA dominated at offshore stations reaching their maximum at depths below the euphotic zone. The bacterial community was dominated by Alphaproteobacteria, accounting for greater than 40% of the total sequence reads and were mainly represented by the SAR11 clade (90.84%), followed by Marinimicrobia (18% of the total sequence reads), mainly represented by clade SAR406 (8.44%). Distinctive bacterial groups were found in the euphotic layer (Bacteroidetes and Actinobacteria) and aphotic layer samples (Deltaproteobacteria, Marinimicrobia, Chloroflexi, Acidobacteria and Planctomycetes). Results of the qPCR analyses further confirmed HTS results with highest abundances obtained for Alphaproteobacteria, followed by Gammaproteobacteria and Bacteroidetes. The adopted multiple approach, combining different molecular tools, critically supported by optics and flow cytometry, reveal changes in the bacterial assemblages during the unusual thermohaline conditions observed in 2016 in the southern Adriatic Sea
    corecore