3,291 research outputs found

    Tunable asymmetric transmission of THz wave through a graphene planar chiral structure

    Full text link
    In this letter, we show that asymmetric transmission of circularly polarized waves through a nanostructured planar chiral graphene film can be observed in terahertz range. The asymmetric transmission effect of monatomic layer graphene closely resembles that of metallic planar chiral nanostructures which has previously been demonstrated. And the relative enantiomeric difference in the total transmission varies with the change of graphene's Fermi level. The plasmonic excitation in the graphene nanostructure is the enantiometically sensitive which is asymmetric for opposite propagating directions. This phenomenon will deepen our understanding of light-matter interactions in planar chiral structures and may find applications in polarization-sensitive devices, sensors, detectors and other areas.Comment: 4 pages, 4 figure

    Enhanced cycling stability of Li–O2 batteries by using a polyurethane/SiO2/glass fiber nanocomposite separator

    Get PDF
    A considerable improvement in the cycle performance of aprotic Li–O2 batteries was achieved by using a polyurethane/SiO2 gel nanoparticles/glass fiber (PU/SiO2/GF) nanocomposite separator, where a persistent capability of 1000 mA h g−1 was maintained for at least 300 charge/discharge cycles in a DMSO electrolyte with 1 M LiClO4 and 0.05 M LiI. In comparison, the cell with a conventional GF separator in the same experimental setup only run for 60 cycles. SEM, XRD and FT-IR analyses indicate that the corrosion and dendritic growth of the Li anode were significantly inhibited during the charge/discharge cycling, and the eventual failure of the Li–O2 batteries was attributed to the cathode passivation caused by the accumulation of the discharge product, which blocked the transfer of oxygen and electrolyte to the MWNTs cathode

    Optical sensory arrays for the detection of urinary bladder cancer‐related volatile organic compounds

    Get PDF
    Non-invasive detection of urinary bladder cancer remains a significant challenge. Urinary volatile organic compounds (VOCs) are a promising alternative to cell-based biomarkers. Herein, we demonstrate a novel diagnostic platform based on an optic fluorescence sensor array for detecting urinary bladder cancer VOCs biomarkers. This study describes a fluorescence-based VOCs sensor array detecting system in detail. The choice of VOCs for the initial part was based on an extensive systematic search of the literature and then followed up using urinary samples from patients with urinary bladder transitional cell carcinoma. Canonical discriminant analysis (CDA) and partial least squares discriminant analysis (PLS-DA) was employed and correctly detected 31/48 urinary bladder cancer VOC biomarkers and achieved an overall 77.75% sensitivity and 93.25% specificity by PLS-DA modelling. All five urine samples from bladder cancer patients and five healthy controls were successfully identified with the same sensor arrays. Overall, the experiments in this study describe a real-time platform for non-invasive bladder cancer diagnosis using fluorescence-based gassensor arrays. Pure VOCs and urine samples from the patients proved such a system to be promising, however further research is required using a larger population sample

    Admissibility of linear predictor in the extended growth curve model

    Get PDF
    In the present paper, we first give the definition of the extended growth curve model, then according to the definition of admissible linear predictor and some matrix properties, obtain the necessary and sufficient conditions for a linear predictor to be admissible in the classes of homogenous and inhomogeneous linear predictors, respectively

    Joint Hypergraph Learning and Sparse Regression for Feature Selection

    Get PDF
    In this paper, we propose a unified framework for improved structure estimation and feature selection. Most existing graph-based feature selection methods utilise a static representation of the structure of the available data based on the Laplacian matrix of a simple graph. Here on the other hand, we perform data structure learning and feature selection simultaneously. To improve the estimation of the manifold representing the structure of the selected features, we use a higher order description of the neighbour- hood structures present in the available data using hypergraph learning. This allows those features which participate in the most significant higher order relations to be se- lected, and the remainder discarded, through a sparsification process. We formulate a single objective function to capture and regularise the hypergraph weight estimation and feature selection processes. Finally, we present an optimization algorithm to re- cover the hyper graph weights and a sparse set of feature selection indicators. This process offers a number of advantages. First, by adjusting the hypergraph weights, we preserve high-order neighborhood relations reflected in the original data, which cannot be modeled by a simple graph. Moreover, our objective function captures the global discriminative structure of the features in the data. Comprehensive experiments on 9 benchmark data sets show that our method achieves statistically significant improve- ment over state-of-art feature selection methods, supporting the effectiveness of the proposed method

    Increasing Glucose 6-Phosphate Dehydrogenase Activity Restores Redox Balance in Vascular Endothelial Cells Exposed to High Glucose

    Get PDF
    Previous studies have shown that high glucose increases reactive oxygen species (ROS) in endothelial cells that contributes to vascular dysfunction and atherosclerosis. Accumulation of ROS is due to dysregulated redox balance between ROS-producing systems and antioxidant systems. Previous research from our laboratory has shown that high glucose decreases the principal cellular reductant, NADPH by impairing the activity of glucose 6-phosphate dehydrogenase (G6PD). We and others also have shown that the high glucose-induced decrease in G6PD activity is mediated, at least in part, by cAMP-dependent protein kinase A (PKA). As both the major antioxidant enzymes and NADPH oxidase, a major source of ROS, use NADPH as substrate, we explored whether G6PD activity was a critical mediator of redox balance. We found that overexpression of G6PD by pAD-G6PD infection restored redox balance. Moreover inhibition of PKA decreased ROS accumulation and increased redox enzymes, while not altering the protein expression level of redox enzymes. Interestingly, high glucose stimulated an increase in NADPH oxidase (NOX) and colocalization of G6PD with NOX, which was inhibited by the PKA inhibitor. Lastly, inhibition of PKA ameliorated high glucose mediated increase in cell death and inhibition of cell growth. These studies illustrate that increasing G6PD activity restores redox balance in endothelial cells exposed to high glucose, which is a potentially important therapeutic target to protect ECs from the deleterious effects of high glucose

    Fluorometric optical sensor arrays for the detection of urinary bladder cancer specific volatile organic compounds in the urine of patients with frank hematuria:a prospective case-control study

    Get PDF
    This study outlines a simple fluorometric optical sensor system for the sensitive, real time measurement of volatile organic compounds (VOCs) as biomarkers of urinary bladder cancer in patients presenting with frank hematuria and confirmed to have the disease on histopathology. Arrays of 24 sensor points based on fluorescence VOC sensitive materials were made. Urine samples of 38 consecutive patients with pathologically confirmed bladder tumours and 41 age and gender matched healthy controls were recruited and analysed using this sensor array. This system correctly classified 68 out of 79 urine samples with 84.21% sensitivity and 87.80% specificity; the system also achieved 66.67% sensitivity and 75.00% specificity for classification of high-grade and low-grade bladder cancer patients. This study showed promising results in the detection of urinary bladder cancer as well as to classify high grade versus low grade bladder cancers

    Putative cancer stem cells may be the key target to inhibit cancer cell repopulation between the intervals of chemoradiation in murine mesothelioma

    Get PDF
    Cancer cell repopulation during chemotherapy or radiotherapy is a major factor limiting the efficacy of treatment. Cancer stem cells (CSC) may play critical roles during this process. We aim to demonstrate the role of mesothelioma stem cells (MSC) in treatment failure and eventually to design specific target therapies against MSC to improve the efficacy of treatment in malignant mesothelioma
    corecore