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Abstract

In this paper, we propose a unified framework for improved structure estimation and

feature selection. Most existing graph-based feature selection methods utilise a static

representation of the structure of the available data based on the Laplacian matrix of a

simple graph. Here on the other hand, we perform data structure learning and feature

selection simultaneously. To improve the estimation of the manifold representing the

structure of the selected features, we use a higher order description of the neighbour-

hood structures present in the available data using hypergraph learning. This allows

those features which participate in the most significant higher order relations to be se-

lected, and the remainder discarded, through a sparsification process. We formulate a

single objective function to capture and regularise the hypergraph weight estimation

and feature selection processes. Finally, we present an optimization algorithm to re-

cover the hyper graph weights and a sparse set of feature selection indicators. This

process offers a number of advantages. First, by adjusting the hypergraph weights, we

preserve high-order neighborhood relations reflected in the original data, which cannot

be modeled by a simple graph. Moreover, our objective function captures the global

discriminative structure of the features in the data. Comprehensive experiments on 9

benchmark data sets show that our method achieves statistically significant improve-

ment over state-of-art feature selection methods, supporting the effectiveness of the

proposed method.
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1. Introduction

Feature selection aims to locate an optimal set of features using a selection crite-

rion. It is an important technique widely used in pattern analysis. It reduces data di-

mensionality by removing irrelevant and redundant features, and brings about a number

of immediate benefits, such as speeding up a data mining algorithm, improving predic-5

tive accuracy, and enhancing comprehensibility. According to the way in which label

information is utilized, feature selection algorithms can be categorized as a) supervised

algorithms, b) unsupervised algorithms or c) semi-supervised algorithms. Examples of

supervised feature selection algorithms include the Fisher Score (FScore) [1], similar-

ity preserving feature selection (SPFS)[2], minimum redundancy maximum relevance10

(mRMR) [3], local-learning based feature selection (LLFS) [4], robust feature selec-

tion via ℓ2,1-norm minimization (L21RFS) [5] and the Trace ratio [6], which only use

labeled training data for feature selection. When sufficient labeled training samples

are to used, supervised feature selection is a reliable alternative, which selects discrim-

inative features by exploiting class labels. However, labeling a large set of training15

samples manually is unrealistic in many real-world applications. In unsupervised fea-

ture selection on the other hand, there is no label information, and the features are

selected which best preserve the data similarity or manifold structure. Examples in-

clude the Laplacian score (LapScore) [7], spectral feature selection (SPEC) [8], multi-

cluster feature selection (MCFS) [9], joint embedding learning and sparse regression20

(JELSR) [10]. Recent work on semi-supervised learning has indicated that it is bene-

ficial to leverage both labeled and unlabeled training data for data analysis. Motivated

by the progress of semi-supervised learning, considerable effort has been devoted to

semi-supervised feature selection. Recent reported algorithms include discriminative

semi-supervised feature selection via manifold regularization (FS-Manifold) [11], lo-25

cality sensitive semi-supervised feature selection (LSDF) [12], the spectral analysis

of semi-supervised feature selection [13] and the noise insensitive trace ratio criterion

(TRCFS)[14]. Usually, these methods use graph representations to characterize the
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manifold structure.

However, there are two common problems with the aforementionedmethods. First,30

the graph construction process is independent of a specific learning process. Once a

graph is determined that characterizes the initial manifold structure of the data, it re-

mains fixed in the following ranking or regression steps of feature selection. Therefore,

the performance of feature selection is largely determined by the effectiveness of the

graph construction. A typical example is the k-nearest neighbor graph used in Locality35

Preserving Projection (LPP) [15]. LPP first constructs a k-nearest neighbor graph (in-

cluding its edge weights) based on the given raw data, and then seeks an optimal linear

transformation with the aim to preserve such a neighborhood graph or the geometry

of a given set of data. This initial graph is based on the characterization of “locality”

which is unnecessary to be optimal, since it is difficult to set the parameters in advance40

(e.g., the neighborhood size and heat kernel width). In fact, these parameters have

a significant impact on the ultimate performance of the algorithm. Second, in many

situations the graph representation can lead to a substantial loss of information. This

is because in real-world problems objects and their features tend to exhibit multiple

relationships rather than simple pairwise ones. For example, consider the problem of45

classifying faces which are viewed under different lighting conditions. See Fig. 1 for

an illustration. It is well known that images of the same objects may appear drastically

different under different lighting conditions [16, 17]. In this scenario, the pairwise

similarity measures for images of the same person may exhibit significant random-

ness. This misleading result is due to the fact that the set of images of a Lambertian50

surface under arbitrary lighting lies on a 3D subspace in the image space [18] where

multiple relationships exist. As a result, higher order relations cannot be meaningfully

characterized by pairwise similarity measures.

A natural way of remedying the information loss described above is to represent

the data set as a hypergraph instead of a graph. Hypergraph representations allow ver-55

tices to be multiply connected by hyperedges and can hence capture multiple or higher

order relationships between features. Due to their effectiveness in representing mul-

tiple relationships, hypergraph based methods have been applied to various practical

problems, such as partitioning circuit netlists [19], clustering [20, 21], clustering cate-
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Figure 1: Shown above are images of five persons under varying illumination conditions. Is it possible to

group them into clusters based on pairwise similarity measure?

gorial data [22], and image segmentation [23]. For multi-label classification, Sun et al.60

[24] construct a hypergraph to exploit the correlation information contained in differ-

ent labels. In this hypergraph, instances correspond to the vertices and each hyperedge

includes all instances annotated with a common label. With this hypergraph represen-

tation, the higher-order relations among multiple instances sharing the same label can

be explored. Following the theory of spectral graph embedding [25], they transform the65

data into a lower-dimensional space through a linear transformation, which preserves

the instance-label relations captured by the hypergraph. The projection is guided by

the label information encoded in the hypergraph and a linear Support Vector Machine

(SVM) is used to handle the multi-label classification problem. Huang et al. [26] used a

hypergraph cut algorithm [21] to solve the unsupervised image categorization problem,70

where a hypergraph is used to represent the complex relationships between unlabeled

images based on shape and appearance features. Specifically, they first extract regions

of interest (ROI) for each image, and then construct hyperedges among images based

on shape and appearance features in their ROIs. Hyperedges are defined as either a)

a group formed by each vertex (image) or b) its k-nearest neighbors (based on shape75

or appearance descriptors). The weight of each hyperedge is computed as the sum of

the pairwise affinities within the hyperedge. In this way, the task of image categoriza-
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tion is transferred into a hypergraph partition problem which can be solved using the

hypergraph cut algorithm.

One common feature of these existing hypergraph representations is that they ex-80

ploit domain specific and goal directed representations. Specifically, most of them are

confined to uniform hypergraphswhere each of the hyperedges have the same cardinal-

ity and therefore do not lend themselves to generalization. The reason for this lies in

the difficulty in formulating a nonuniform hypergraph in a mathematically elegant way

for the purpose of computation. There has yet to be a widely accepted and consistent85

way for representing and characterizing nonuniform hypergraphs, and this remains an

open problem when exploiting hypergraphs for feature selection.

To address these shortcomings, an effective method for hypergraph construction is

needed, such that the ambiguities of relational order can be overcome. In this paper, we

improve the hypergraph construction approach presented above using a sparse repre-90

sentation model. Specifically, a hypergraph is constructed using each sample as a node,

and a hyperedge includes a sample and its correlated samples, with the corresponding

non-zero elements extracted in the sparse vector. Instead of generating a single hy-

peredge for each sample, we generate a group of hyperedges by varying regularization

parameter values to give different sparsity solutions of the model. This makes our ap-95

proach much more robust than previous hypergraph methods, because we do not need

to tune the neighborhood size as a parameter. However, with this hypergraph construc-

tion approach, a large number of remaining hyperedges are generated with redundancy.

In addition, they have different effects in classification accuracy. For example, hyper-

edges that are generated from samples close to the classification boundary may link100

samples from different classes. Since samples connected by a hyperedge are expected

to be from the same class, the hyperedges that link samples from different classes

will be less informative or may even have derogatory effects. Therefore, in order to

modulate the effects of different hyperedges, we place a regularizer on the hyperedge

weights. In this way, the effects of different hyperedges can be adaptively modulated105

and useless hyperedges can be discarded (i.e., the weights of redundant hyperedges

will be 0), and thus, we can select the most effective hyperedges.

In this paper, we propose a unified learning framework which performs structure
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learning and feature selection simultaneously. The structures are adaptively learned

from the results of hypergraph learning, and the informative features are selected to110

preserve the refined structures of data. The hypergraph can well keep high-order neigh-

borhood relationship reflected by the original data, which cannot be modeled by a

simple graph. Moreover, rather than just targeting the locality preserving power char-

acterized by hypergraph learning, our objective function also considers global discrim-

inative structure of data. Concretely, global discriminative information in our frame-115

work is preserved by exploiting the underlying pairwise sample similarity. The sample

similarity measure may introduce the discriminative information when the data labels

are known. Comprehensive experiments on seven benchmark data sets show that our

method achieves statistically significant improvement over state-of-art feature selection

methods, suggesting the effectiveness of the proposed method.120

2. Related Work

In this section, we first establish a list of the main notations used in the paper

and summarized in Table.1. Then, we review some of the well-known algorithms

for learning-based feature selection, all of which are closely related to our proposed

method.125

1) LapScore: Laplacian score [7] uses a k-nearest neighbor graph to model the

local geometric structure of the data and selects the features most consistent with the

graph structure. Consider a dataset X = [x1, . . . , xn]
T , in order to approximate the

manifold structure of the dataset, a k-nearest neighbor graph is built, which contains

an edge with weight wij
g between xi and xj if xi is among the k nearest neighbors

of xj or conversely. There are different similarity based methods that can be used

to determine the edge weights. In general, the Euclidean distance is widely used as

similarity measure. Therefore, the elementwij
g of the weight matrixWg can be defined

as below,

wij
g =

⎧

⎨

⎩

e−
∥xi−xj∥

2

t , if xi and xj are neighbors

0, otherwise.
. (1)

where t is a suitable constant. A feature that is consistent with the graph structure can

be thought of as the one for which two data points are close to each other if and only
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Table 1: Important notations used in this paper and their definitions

d The dimension of input data, i.e. the number of all features of input

data.

n The number of data points.

NoF The number of selected features.

k Dimensionality of embedding.

m The number of hyperedges.

l The number of selected labeled data out of all dataX.

X X = [x1, . . . , xn]
T ∈ ℜn×d is the input data matrix. Each row xi ∈ ℜd

denotes a data point, for i = 1, . . . , n.

Wg Wg is the weight matrix of graph where each edge weigh is represented

by wij
g . Here we assume w

ij
g is symmetric where w

ij
g = wji

g

fr fr = (fr1, . . . , frn)
T ∈ ℜn is the r-th feature vector of data (r =

1, . . . , d). It is also the r-th column of the data matrix X, i.e., X =

[f1, . . . , fd].

D D is the diagonal degree matrix of graph whereDii =
∑

j w
ij
g

Y Y = [y1, y2, . . . , yn]
T ∈ ℜn×k is the data matrix of embedding

W W = [w1, w2, . . . , wk] ∈ ℜd×k is the transformation matrix

De The diagonal matrix of the hyperedge degrees

Dv The diagonal matrix of the hypergraph vertex degrees

H The incidence matrix of the hypergraph

WH The diagonal weight matrix and its (i, i)-th element is the weight of the

i-th hyperedge

L̂H The normalized Laplacian matrix of hypergraph

S S ∈ ℜd×k is the sparse transformation matrix

A A ∈ ℜl×n is a binary selection matrix. It selects the labeled data out of

all dataX

K K is a predefined similarity matrix.

w(e) The weight of hyperedge e

δ(e) The degree of the hyperedge e
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if there is an edge between these two points. Let fri denote the i-th sample of the r-th

feature and fr = (fr1, . . . , frn)
T . To select a good feature, we need to minimize the

following objective function:130

SCLs =

∑

ij(fri − frj)
2wij

g

V ar(fr)
. (2)

where V ar(fr) is the estimated variance of the r-th feature. Features with larger vari-

ance are preferred, as they are expected to have more representational power. Given

Wg, its corresponding degree matrix Dii =
∑

j w
ij
g and Laplacian matrix L =

D − Wg, the variance of weight data can be calculated based on D which models

the importance of the data points.

V ar(fr) = f̃T
r Df̃r , (3)

where

f̃r = fr −
fT
r D1

1TD1
1 , (4)

Here, we center the data by subtracting the mean from each feature fr using Equation

(4). This is done to prevent a non-zero constant vector such as 1 to be assigned a zero

Laplacian score, since such a feature obviously does not contain any information.

For a good feature, the larger wij , the smaller (fri − frj), and thus it is easy to see

that,
∑

ij

(fri − frj)
2wij

g = 2fT
r Lfr = 2f̃T

r Lf̃r , (5)

Finally, the Laplacian score of the r-th feature is reduced to

SCLs(fr) =
f̃T
r Lf̃r

f̃T
r Df̃r

, (6)

2) MCFS and MRSF: MCFS and MRSF are learning based feature selection meth-135

ods that first compute an embedding and then use regression coefficients to rank each

feature. In the first step, both methods compute a low dimensional embedding rep-

resented by the co-ordinate matrix Y . One simple way in deriving low dimensional

embedding is to use the Laplacian Eigenmap (LE) [27], a well known dimensional-

ity reduction method. Denote by Y = [y1, y2, . . . , yn]
T and ŷi as transpose of the140
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i-th row of Y. The idea common to both MCFS and MRSF is to regress all xi to ŷi.

Their differences are used to determine sparseness constraints. MCFS [9] uses ℓ1-norm

regularization and can be regarded as solving the following problems in sequence:

Y = arg min
YYT=I

tr(YLY
T )

W = argmin
W

∥XW −Y∥22 + α∥W∥1 (7)

Similarly, MRSF first computes the embedding by Eigen decomposition of the graph

Laplacian and then regression is with ℓ2,1-norm regularization. In other words, MRSF145

can be regarded as solving the following two problems in sequence:

Y = arg min
YYT=I

tr(YLY
T )

W = argmin
W

∥XW −Y∥22 + α∥W∥2,1 (8)

MCFS and MRSF employ different sparseness constraints, i.e., ℓ1 and ℓ2,1 respec-

tively, in constructing a transformation matrix which is used for selecting features.

Nevertheless, the low dimensional embedding, i.e., Y, is determined in the first step

and remains fixed in the subsequent ranking or regression step. As a result the per-150

formance of feature selection is largely determined by the effectiveness of graph em-

bedding. However, it would be better to learn a graph structure closely linked with the

feature selection process.

3) JELSR [28]: Instead of simply using the graph Laplacian to characterize high

dimensional data structure and then performing regression, JELSR (joint embedding

learning and sparse regression) unifies embedding/learning and sparse regression steps

in constructing a new framework for feature selection :

(W,Y ) = arg min
W,YYT=I

tr(YLY
T ) + β(∥XW −Y∥22 + α∥W∥2,1) (9)

where α and β are balance parameters. The objective function in Eq.(9) is convex

with respect to W and Y. As a result, W and Y can be updated in an alternative155

way. As we can see from Eq.(29) in [28], the sparse regression of objective function,

i.e. the value ofW, also affects the low dimensional embedding, i.e., Y. Alternative

methods, such as MCFS and MRSF, simply minimize tr(YLY
T ). Although JELSR

performs better in many cases, the optimal graph embedding in JELSR depends heavily
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on the transformed data, without making the best use of the original data and the graph160

edge weights also not learned by the algorithm. This easily leads to the instability

performance, especially when encountering a “bad” transformation matrix.

4) LPP [15]: LPP (locality preserving projection) constructs a graph by incorpo-

rating neighborhood information derived from the data. Using the graph Laplacian, a

transformation is computed to map the data into a subspace by optimally maintaining

the local neighborhood information. LPP optimizes a linear transformationW accord-

ing to

min
W

n
∑

i,j=1

∥xiW − xjW∥2wij
g

s.t. W
T
X

T
DXW= 1 (10)

where wij
g is the graph edge weight which can be computed by Eq.1 and Dii =

∑

j w
ij
g . The basic idea underlying LPP is to find a transformation matrixW, which

transforms the high-dimensional data X into a low-dimensional matrix XW, so as to165

maximally preserve the local connectivity structure of X with XW. Minimizing (10)

ensures that, if xi and xj are close, and as a result xiW and xjW are close too.

As described above, LPP seeks a low-dimensional representation with the purpose

of preserving the local geometry in the original data. However, such “locality geome-

try” is completely determined by the artificially constructed neighborhood graph. As170

a result, its performance may drop seriously if given a “bad” graph. Therefore, it is

better to optimize the graph and learn the transformation simultaneously in a unified

objective function.

Our proposed method can be discriminated from the previous methods in the fol-

lowing senses:(1) Our propose method selects features to respect both the global and175

local manifold structure, while most previous feature selection methods only incorpo-

rates the local manifold structure; (2) The local structure in previous methods is based

on a k-nearest neighbor graph, while our proposed method learns a hypergraph, which

can model high-order neighborhood relationship reflected by the original data. (3)

JELSR [28] iteratively performs spectral embedding for clustering and sparse spectral180

regression for feature selection. However, the local structure itself (i.e. the Laplacian
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matrix) is not changed during iterations. Our proposed method can adaptively improve

the local structure characterization using hypergraph learning.

3. Hypergraph Learning

In this section, we review the definitions of hypergraphs and hypergraph Laplacian.185

Then, we present our hypergraph construction and learning method.

3.1. Hypergraph Fundamentals

A hypergraph is defined as a tripletGH = (V,E,w), where V = {1, . . . , n} is the

node index set, E is a set of non-empty subsets of V or hyperedges and w is a weight

function which associates a real value with each edge. A hypergraph is a generalization190

of a graph. Unlike graph edges which consist of pairs of vertices, hyperedges are

arbitrarily sized sets of vertices. Each hyperedge e is assigned a positive weight w(e).

The degree of a hyperedge e, denoted as δ(e), is the number of vertices in e. For a

vertex v ∈ V , the degree is defined to be d(v) =
∑

v∈e,e∈E w(e). The diagonal matrix

representations for δ(e), d(v), w(e) are denoted by De, Dv and WH, respectively.195

Examples of a hypergraph are shown in Fig. 2(a). For the hypergraph, the vertex set is

V = {v1, v2, v3, v4, v5, v6}, where each vertex represents a sample, and the hyperedge

set is E =
{

e1 = {v1, v2, v3}, e2 = {v3, v4, v5}, e3 = {v5, v6}
}

. The number of

vertices constituting each hyperedge represent the order of the relationship between

samples.200

The hypergraph GH can be represented by a vertex-edge incidence matrix H ∈

R|V |×|E| (see Fig. 2(b)) is defined as follows:

h(v, e) =

⎧

⎨

⎩

1, if v ∈ e

0, otherwise.
(11)

According to the definition ofH, d(v) =
∑

e∈E w(e)h(v, e) and δ(e) =
∑

v∈V h(v, e).

3.2. Hypergraph Laplacian

Although the incidence matrix H can fully describe the characteristics of a hy-

pergraph, the matrix elements represent vertex-to-hyperedge relationships rather than
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(a) Hypergraph Example (b) Incidence Matrix

Figure 2: An Example of Hypergraph.

vertex-to-vertex relationships. To obtain a vertex-to-vertex representation, we need to205

establish the adjacency matrix and Laplacian matrix for a hypergraph. To achieve this

goal, one possible method is to construct a graph with edges weighted by the quotient

of the corresponding hyperedge weight and cardinality, e.g., clique expansion [29] and

star expansion [29]. As an alternative, one approach is to adopt a matrix representation

determined from the adjacency matrix and the associated Laplacian matrix for a hyper-210

graph, e.g. the normalized Laplacian [21]. In this paper, we adopt the method proposed

in [21] to build the hypergraph Laplacian. Specifically, the normalized Laplacian ma-

trix of a hypergraph is defined as L̂H = I|V| −D
− 1

2

v HWHD
−1
e H

T
D

− 1

2

v , whereDv

is the diagonal vertex degree matrix whose diagonal element d(vi) is the summation of

the i-th row ofH, andDe is the diagonal edge degree matrix whose diagonal element215

δ(ej) is the summation of the j-th column ofH.

3.3. Hypergraph Construction and Learning

For our hypergraph construction, we regard each sample in the data set as a vertex

on hypergraph GH = (V,E,w), where V = {x1, x2, . . . , xn} is the vertice set. In-

spired by the recent developments on sparse representation and ℓ1-regularized models

[30], we propose to generate hyperedges by linking correlated samples. Specifically,

each sample can be regarded as a response vector, and can be estimated by a linear

12



combination of remaining n− 1 samples, i.e.,

xi = Piαi + εi, i = 1, 2, . . . , n (12)

where Pi = [x1, x2, . . . , xi−1, 0, xi+1, . . . , xn] denotes a data set including all the

samples except the i-th sample (we put 0 in its location), and αi essentially contains

the combination coefficients for different samples in approximating xi, and εi ∈ ℜn

is a noise term. A natural method for determining sparse solutions of αi is formed by

solving the following problem:

min
αi

∥xi − Piαi∥2 + λ∥αi∥1 (13)

where λ > 0 is a regularization parameter controlling the sparsity of αi. Due to the

nature of the ℓ1-norm penalty, some coefficients will be shrunk to zero if λ is large

enough. In this case, we can generate a hyperedge containing the most correlated220

samples (corresponding to the non-zero coefficients in αi) with respect to xi. Different

λ values correspond to different sparsity solutions. So instead of generating a single

hyperedge for each sample xi, we generate a group of hyperedges by varying the value

of λ over a specified range. Specifically, in our experiments, we vary λ from 0.1 to 0.9

with an incremental step of 0.1.225

With this hypergraph construction approach, a large set of remaining hyperedges

are generated with redundancy. In addition, they have varying effects on the classi-

fication. For example, several hyperedges that are generated from samples close to

the classification boundary and they link samples from different classes. Therefore,

an effective method for modulating the effects of different hyperedges is needed, such230

that the weights of redundant hyperedges will be 0, and allowing to select the effective

hyperedges.

The importance of preserving local geometric data structure has been well recog-

nized in the recent literature on dimensionality reduction [31] [32] [15] [33]. The local

geometric structure of data refers to the local neighborhood relationships for a set of a235

dataset, which can be characterized through the k nearest neighbors of each sample. By

evoking by the principle that nearby points should have similar properties, we define a

13



regularizer on the hypergraph:

Ω = 1
2

∑

e∈E

∑

xi,xj∈V

w(e)h(xi,e)h(xj ,e)
δ(e) × (xiS− xjS)

2

= S
T
X

T
L̂HXS

= S
T
X

T(I|V| −D

−1

2

v HWHD
−1
e H

T
D

−1

2

v )XS (14)

where S is a linear transformation matrix. The weight of the hyperedge e is assigned

a term 1
2δ(e)

∑

xi,xj∈V (e)

(xiS − xjS)
2. Here, V (e) is used to denote the set of vertices

connected to hyperedge e. As a result, this term measures the feature smoothness on

the samples in V (e). Intuitively, hyperedges connecting to the samples from the same

class are informative by minimizing (14) with respect to WH. We ensure that, if xi

and xj are close, then xiS and xjS will also be close. Therefore, we use the following

objective function to learn the weights of the hyperedgesWH

min
WH

tr(ST
X

T
L̂HXS) + γ∥diag(WH)∥2

s.t.
m
∑

j=1

W j
H= 1,W j

H ≥ 0, j = 1, . . . ,m (15)

wherem is the number of hyperedges and diag(WH) indicates the diagonal vector of

WH, i.e., (W
1
H ,W 2

H , . . . ,Wm
H ). In order to control the model complexity motivated240

by the success of sparse learning, we add two constraints
m
∑

j=1

W j
H = 1 andW j

H ≥ 0 in

(15). In particular, the first constraint fixes the summation of the weights. The second

constraint avoids negative weights. Thus, we can see that the solution ofWH is on a

simplex and enjoys the property of sparseness, i.e., the weights assigned to redundant

hyperedges will be set to 0.245

4. Proposed Framework for Feature Selection

Turning our attention to the task of feature selection, we expect that the trans-

formation matrix S in (15) satisfies the sparsity property for feature selection. More

concretely, we expect that only a few elements in S are nonzero. As a result the cor-

responding featuresXS are selected since these features are sufficient to preserve the

similarity and local geometrical structure of the original data X. We use an ℓ2,1-norm

14



regularizer to enforce row sparsity of S, and thus has the effect of feature selection

and helps to avoid selecting redundant features. This paper introduces a novel fea-

ture selection framework: joint hypergraph learning and sparse regression (referred to

as JHLSR). Rather than simply targeting the locality preserving power characterized

by hypergraph learning, our proposed model also accommodate the sample similarity

structure which can be computed using a predefined similarity measure. In order fulfill

this goal, we propose to unify hypergraph learning and sample similarity preserving in

forming a new framework as

min
S,WH

∥(AXS)(AXS)T −K∥2F + µtr(ST
X

T
L̂HXS) + λ∥S∥2,1 + γ∥diag(WH)∥2

s.t.
m
∑

j=1

W j
H= 1,W j

H ≥ 0, j = 1, . . . ,m (16)

whereA ∈ ℜl×n is a binary selection matrix andK is a predefined similarity matrix.

It selects the labeled data out of all data X when both labeled and unlabeled data are

available. S ∈ ℜd×k where d is the number of features inX and k denotes the dimen-

sions of the transformed data. ∥· ∥F denotes the Frobenius matrix norm and ∥· ∥2,1 is

the ℓ2,1-norm of S. The first term in (16) stands for the global structure preservation by

emphasizing the pairwise sample similarity, while the second term exploits the local

geometric structure of data. The third term is the ℓ2,1-norm regularization term, which

is added to promote row-sparsity. The last term is the diagonal vector of hyperedge

weightWH and enjoys the sparse property, i.e., the weights of useless hyperedges will

be set to 0. To bemore specific, the first term aims to select k (k < d) features, based on

which best preserves the sample similarity as specified by a predefined similarity ma-

trix K. Here, K is constructed using the Fisher Kernel in supervised learning [2] and

by a Gaussian Kernel in unsupervised learning. However, ∥(AXS)(AXS)T −K∥2F

is not convex with respect to S. To solve this problem, the method in [2] addresses the

following convex optimization problem instead:

min
S

∥AXS−Φ∥2F + λ∥S∥2,1 (17)

where Φ is obtained by decomposing K as K = ΦΦ
T. Note that ∥S∥2,1 is convex.

Nevertheless, its derivative does not exist when ŝi = 0 for i = 1, 2, . . . , d. Therefore,
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we use the definition tr(ST
US) = ∥S∥2,1/2 in [28] when ŝi is not equal to 0. The

U ∈ ℜd×d is diagonal with i-th diagonal element where

Uii =
1

2∥ŝi∥2
(18)

Based on the definitions in (17) and (18), our proposed objective function (16) can be

rewritten as

min
S,WH

∥AXS−Φ∥2F + µtr(ST
X

T
L̂HXS) + λtr(ST

US) + γ∥diag(WH)∥2

s.t.
m
∑

j=1

W j
H= 1,W j

H ≥ 0, j = 1, . . . ,m (19)

From (19), it is clear that the proposed objective function has a regularizer on the

hyperedge weights and simultaneously optimizes both the transformation matrix S and

the hyperedge weights WH. In this way, the effects of different hyperedges can be

adaptively regulated’. For those hyperedges that are informative, higher weights will250

be assigned. In addition, our method sparsifies the transformation matrix S, i.e., it

optimizes S by maximally preserving both the local geometrical structure of the data

characterized by L̂H and the sample similarity of the labeled data characterized byK.

Figure 3: Flowchart of the proposed method

Fig.3 shows the flowchart of the proposed method for feature selection. We pro-
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pose a global and local structure preservation framework for feature selection which255

integrates both global sample similarity structure and local geometrical structure to

conduct feature selection (see Eq.19). Concretely, global discriminative information in

our framework is preserved by exploiting the underlying sample similarity (see Eq.17).

The sample similarity measure may introduce the discriminative information when the

data labels are known. Local geometrical structure of data refers to the local neigh-260

borhood relationship of a dataset, which can be captured by the results of hypergraph

learning (see Eq.15). Specifically, a hypergraph is constructed using each sample as

a node, and a hyperedge includes a sample and its correlated samples, with the corre-

sponding non-zero elements extracted in the sparse vector (see Eq.13).

5. Optimization Algorithm265

The initial value for each hyperedge weight is set according to the rules given

in [34]. First, the |V | × |V | affinity matrix A is calculated according to Aij =

exp
(

−
∥vi−vj∥

2

σ2

)

where σ is the average distance among all vertices. Then, the initial

weight for each hyperedge isW i
H =

∑

vj∈ei
Aij . To obtain the global minimal solu-

tion of (19), we need an iterative and interleaved optimization process, which can be270

summarized as in Algorithm 1. In each iteration step, the sparse matrix S is calculated

with the current valueWH, as in equation (21). The diagonal matrixWH is updated

based on the merely calculated value of S as in equation (27). After obtainingWH,

we then update the normalized Laplacian matrix L̂H in (23).

We first fixWH and solve for S. In other words, we need to solve the following

subproblem:

min
S

∥AXS−Φ∥2F + µtr(ST
X

T
L̂HXS) + λtr(ST

US) (20)
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Taking the derivative with respect to S and setting it to zero, we have

∂

∂S

[

∥AXS−Φ∥2F + µtr(ST
X

T
L̂HXS) + λtr(ST

US)

]

= 0

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂
∂S

∥AXS−Φ∥2F = 2(XT
A

T
AX)S− 2A

T
X

T
Φ,

∂
∂S

tr(ST
US) = 2US,

∂
∂S

tr(ST
X

T
L̂HXS) = 2(XT

L̂HX)S.

S =
(

X
T(AT

A+ µL̂H)X+ λU
)−1

A
T
X

T
Φ

(21)

We then fix S and solve forWH. The subproblem becomes

min
WH

µtr(ST
X

T
L̂HXS) + γ∥diag(WH)∥2 (22)

Let

L̂H = I|V| −D
− 1

2

v HWHD
−1
e H

T
D

− 1

2

v (23)

Then solving the minimization problem in Eq.(22) with respect to WH is equivalent

to the following problem,

min
WH

{

− µtr(ST
X

T
D

−1

2

v HWHD
−1
e H

T
D

−1

2

v XS) + γ∥diag(WH)∥2
}

s.t.
m
∑

j=1

W j
H= 1,W j

H ≥ 0, j = 1, . . . ,m (24)

SinceWH andD−1
e are both diagonal matrices, we let R = S

T
X

T
D

−1

2

v H whereR

is the matrix [rT1 , . . . , r
T
m]T and ri = [r1i , r

2
i , . . . , r

m
i ]. The first term appearing in

Eq.(24) can be written as

tr(ST
X

T
D

−1

2

v HWHD
−1
e H

T
D

−1

2

v XS) = tr(RWHD
−1
e R

T) (25)
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In Eq.(25), its matrix form becomes

tr(RWHD
−1
e R

T) = tr(R ∗

⎡

⎢

⎢

⎢

⎣

W 1
H 0 0

0
. . . 0

0 0 Wm
H

⎤

⎥

⎥

⎥

⎦

∗

⎡

⎢

⎢

⎢

⎣

δ(e1)
−1 0 0

0
. . . 0

0 0 δ(em)−1

⎤

⎥

⎥

⎥

⎦

∗RT )

= W 1
H

(

m
∑

i=1

(r1i )
2
)

δ(e1)
−1 + · · ·+Wm

H

(

m
∑

i=1

(rmi )2
)

δ(em)−1

Therefore, the minimization problem in Eq.(24) can be rewritten as

min
WH

{

− µ

(

W 1
H

(

m
∑

i=1

(r1i )
2
)

δ(e1)
−1 + · · ·+Wm

H

(

m
∑

i=1

(rmi )2
)

∗ δ(em)−1

)

+ γ∥diag(WH)∥2

}

s.t.
m
∑

j=1

W j
H= 1,W j

H ≥ 0, j = 1, . . . ,m (26)

We use the coordinate descent algorithm to solve the above minimization problem. At

each iteration, two elements are selected for updating, and the remainder are fixed. For

example, in an iteration, the p-th and the q-th elements, i.e.,W p
H andW

q
H , are selected.

According to constrain
m
∑

j=1

W j
H = 1, the summation ofW p

H andW q
H will not change

after this iteration step. Hence, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

W p∗
H = 0,W q∗

H = W p
H +W q

H , if 2 γ
µ (W

p
H +W q

H)

+(Sq − Sp) ≤ 0

W p∗
H = W p

H +W q
H ,W q∗

H = 0, if 2 γ
µ (W

p
H +W q

H)

+(Sp − Sq) ≤ 0

W p∗
H =

(2γ/µ)(Wp

H
+W q

H
)+(Sq−Sp)

4γ/µ , else

W q∗
H = W p

H +W q
H −W p∗

H

(27)

where Sp = −
(
∑m

i=1(r
p
i )

2
)

∗ δ(ep)
−1 and Sq = −

(
∑m

i=1(r
q
i )

2
)

∗ δ(eq)
−1. Note275

that, in the first line of Eq.(27), we can see that W p∗
H will be set to 0. This indicates

the solution of WH has the potential to be sparse, i.e., redundant hyperedges will be

removed.
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After the optimal value of S is obtained, we then sort the original d features ac-

cording to ℓ2-norm values of the d rows of S in descending order, and then select the280

top ranked features.

Algorithm 1: Joint Hypergraph Learning and Sparse Regression (JHLSR)

Input: X,K,A and regularization parameter µ,λ and γ. WH with initial values,

hypergraph normalized Laplacian L̂H, the matricesDv,De andH

accordingly.

Output: the otpimalWH and sparse matrix S

Step 1: Sparse matrix S update. ;

1: repeat

2: compute St1+1 by Eq.21;

3: calculate the diagonal matrix U t1+1, where the i-th diagonal element is

1

2∥ŝ
t1+1

i
∥2

;

4: t1 = t1 + 1;

5: until convergence;

Step 2: WH update. Update the weightsWH with the iterative coordinate

descent method introduced in (27) ;

Step 3: L̂H update. Update the normalized Laplacian matrix L̂H in (23)

accordingly ;

Step 4: Let t2 = t2 + 1. if t2 > T , quit iteration and output the results,

otherwise go to Step 1.

6. Convergence and Complexity Analysis

In this section, we will analyze the properties of the JHLSR algorithm according to

three criteria. We first provide the convergence analysis and then discuss computational

complexity and parameter determination problems.285

6.1. Convergence Proof

Since we have solve JHLSR in an alternative way, we would like to show its conver-

gence behavior. The convergence of Algorithm 1 can be guaranteed if the following
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properties be satisfied.

Theorem 1: The iterative procedure, i.e., Step 1 in Algorithm 1, will monotonically290

decrease the objective function value in Eq.20.

Theorem 2: When S is fixed, Step 2 in Algorithm 1 will monotonically decrease the

objective function value in Eq.19.

Proofs: The proof of Theorem 1 and Theorem 2 are provided in the Appendix A and

Appendix B respectively.295

From Theorem1 and Theorem 2, we can see that the iterative procedure inAlgorithm 1

will monotonically decrease the objective function and converge to a global optimum.

The following experiments also confirm that the proposed method converges rapidly,

typically with a number of iterations is less than 4.

6.2. Complexity Analysis300

At each iteration, the main computation of Step 1 in Algorithm 1 is to solve the

d × d matrix inverse problem in Eq.21. For many feature selection tasks, the feature

dimensionality d is much larger than the number of samples n. The inverse of a large

matrix can considerably increase the computational cost. According to [5], we have

the following identity:305

(

X
T(AT

A+ µL̂H)X+ λU
)−1

X
T = ΩX

T
(

(AT
A+ µL̂H)XΩX

T + I

)−1

(28)

where Ω = 1
λ
U−1 and I is an n × n identity matrix. From Eq.28, we can convert

a d × d matrix inverse problem to an n × n one. In doing so, the time complexity of

Step 1 in Algorithm 1 at each iteration isO
(

min(n, d)3
)

. And the computational cost

of Step 2 is O(m2), where m is the number of hyperedges. The computational cost

of the hypergraph construction process in Eq.13 is O(r3 + n2), where r is the number310

of nonzero coefficients in α. Thus, the computational complexity of Algorithm 1 is

max
{

O
(

min(n, d)3
)

, O(m2), O(r3 + n2)
}

.

6.3. Parameter Determination

A parallel issue to optimizing the JHLSR algorithm is selecting optimal values

of the parameters µ, λ and γ. The parameter λ and γ are regularization parameters315
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controlling the sparsity of S and WH, and the parameter µ is used to trade off the

importance of data similarity preservation and local geometric structure preservation.

In order to assign an appropriate value of µ, we employ a cross-validation procedure

for µ estimation. In addition, another two parameters, i.e., λ and γ are empirically

determined by grid search.320

7. Experiments and Comparisons

In this section, we discuss the merits and limitations of the proposed feature se-

lection approach, including a convergence analysis, computational complexity, and pa-

rameter determination. A comprehensive experimental study on a variety of data sets

is conducted in order to compare our feature selection approach with several state-of-325

the-art methods in supervised, unsupervised, and semi-supervised modes.

7.1. Experimental Setting

From (16), we observe that theA ∈ ℜl×n is a binary selection matrix and it selects

the labeled data out of all data X when both labeled and unlabeled data are available.

A will degenerate to an identity matrix when only with labeled or unlabeled data are330

available. According to the value of A, the objective function (19) can implement

feature selection in supervised, unsupervised and semi-supervised way. Here, we refer

to our proposedmethod in these three modalities as Sup-JHLSR, Un-JHLSR and Semi-

JHLSR respectively. The initial value for each hyperedgeweight is set according to the

rules given in [34].335

To demonstrate the effectiveness of the proposed approach, we conduct experi-

ments on 9 benchmark data sets, i.e., a) the Prostate-GE [5], b) malignant glioma

(GLIOMA) data set [35], c) SMK-CAN [36], d) COIL-20 [37], e) handwritten digit

image data set MNIST [38], f) Caltech256-2000 [39], g) Scene15 [40], h) ORL [7] and

i) ALLAML [5]. Table. 2 summarizes the extent and properties of each of the 9 data-340

sets. For each dataset, 50% of samples are randomly selected as training data, and the

remaining are treated as test data in both supervised and the unsupervisedmodalities. In

the semi-supervised case, 5% and 40% samples are randomly selected as labeled and
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unlabeled data, respectively, and the remaining are used as test data. We repeat this

procedure 10 times and obtain 10 random partitions of the original data. The above345

feature selection algorithms are evaluated on each partition and the averaged results

are reported.

Table 2: Summary of 9 benchmark data sets

Data-set Sample Features Classes

Prostate-GE 102 5966 2

GLIOMA 50 4434 4

SMK-CAN 187 19993 2

COIL-20 1440 1024 20

MNIST 2000 784 10

ORL 400 1024 40

Caltech256-2000 2000 21504 20

Scene15 1500 21504 15

ALLAML 72 7129 2

7.2. Experiment setup

In order to explore the discriminative capabilities of the information captured by our

method, we use the selected features for the purpose of classification. We compare the350

classification results from our proposed method (Sup-JHLSR, Un-JHLSR and Semi-

JHLSR) with twelve representative feature selection algorithms.

For supervised learning, six alternative feature selection algorithms are selected as

baselines. Compared with our proposed method Sup-JHLSR, most of these methods

focus on selecting features that preserve the sample similarity, and neglect the local355

geometric structure of data. We will briefly introduce these methods one by one.

• Fscore[1]: Fisher Score is a classical feature selection algorithm. It conducts

feature selection by evaluating the importance of features one by one. In contract to

LapScore and SPEC, Fscore is supervised with class label.

• SPFS [2]: The basic idea of SPFS is to pursue a transformation matrix, which360
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transform the high-dimensional data to a low-dimensional data, to maximally preserve

the global similarity structure of original data.

• mRMR [3]: mRMR is a mutual information based method which is designed to

select features that have the maximal statistical dependency on the classification vari-

able, while simultaneously minimizing the redundancy among the selected features.365

• LLFS [4]: LLFS selects features which best preserve the global similarity struc-

ture of the original data.

• L21RFS [5]: L21RFS shares the spirit of similarity preservation is SPFS. The

major difference between L21RFS and SPFS is that the regression loss in SPFS is

measured by the Frobenius norm, while the ℓ2,1-norm is adopted in L21RFS.370

• Trace ratio [6]: The trace ratio criterion locates a feature subset for which the

within class pairwise affinities are large, while the between class separation is large.

For unsupervised learning, four alternative feature selection algorithms are selected

as baselines. A commonly used criterion in these alternative methods is to select the

features which best preserve the manifold structure derived from the Laplacian of a375

graph, where the graph is constructed before hand. However, they separate the pro-

cesses of learning the graph and feature ranking. In practice, the ideal graph is difficult

to define in advance. Because one needs to assign appropriate values for parameters

such as the neighborhood size or the heat kernel parameter involved in graph construc-

tion, the process is conducted independently of subsequent feature selection. As a result380

the performance of feature selection is largely determined by the effectiveness of graph

construction. Our proposedmethod Un-JHLSR performs data manifold structure learn-

ing and feature selection simultaneously.The structures are adaptively learned from the

results of hypergraph learning, and the informative features are selected to preserve the

refined structures of data.385

• LapScore [7]: LapScore selects features which can best preserve the locality

relationship revealed by weight matrix of a predefined graph.

• SPEC [8]: SPEC is a framework for feature selection based on spectral graph

theory. It firstly constructs a normalized graph Laplacian and then defines different

metrics to measure the importance of each feature. SPEC also can be regarded as an390

extension of LapScore which is more robust to noise.
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• MCFS [9]: Multi-Cluster Feature Selection (MCFS) selects features by sequen-

tially conducting manifold learning and spectral regression.

• JELSR [10]: which joint embedding learning with sparse regression to perform

feature selection.395

We also compare our obtained results with two state-of-art semi-supervised feature

selection methods:

• LSDF [12]: Locality sensitive semi-supervised feature selection (LSDF) is a

semi-supervised feature selection approach based on within-class and between-class

graph construction.400

• TRCFS [14]. Noise insensitive trace ratio criterion for feature selection (TRCFS)

is a recent semi-supervised algorithm based on noise insensitive trace ratio criterion.

A 10-fold cross-validation strategy using the C-Support Vector Machine (C-SVM)

[41] is employed to evaluate the classification performance. We perform the cross-

validation on the test samples taken from the feature selection process. Specifically, the405

entire sample is randomly partitioned into 10 subsets and then we choose one subset

for test and use the remaining 9 for training, and this procedure is repeated 10 times.

The final accuracy is computed by averaging the accuracies from each of the random

subsets.

7.3. Classification Evaluation410

Each subfigure shows the classification accuracy versus the number of selected

features for each dataset in turn.

1)Results for the Supervised Case (Sup-JHLSR): The classification accuracies

obtained with different feature subsets based on supervised learning are shown in Fig.4.

From the figure, it is clear that our proposed method Sup-JHLSR is, by and large, su-415

perior to the alternative supervised feature selection methods on all the 9 benchmark

datasets. Following [2], Table. 3 reports the “aggregated ” SVM classification ac-

curacy of different algorithms on each data set. The aggregated SVM classification

accuracy is obtained by averaging the averaged accuracy achieved by SVM using the

top 10,20,. . .,200 features selected by each algorithm. The boldfaced values are the420

highest ones.
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(a) Prostate-GE dataset
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(b) GLIOMA dataset
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(c) SMK-CAN dataset
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(d) MNIST dataset
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(e) Caltech256-2000 dataset
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(f) Scene15 dataset
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(g) ORL dataset
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(h) COIL-20 dataset
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Figure 4: Accuracy rate vs. the number of selected features on 9 benchmark datasets by supervised learning.

The bottom row of Table. 3 shows the averaged classification accuracy for all the

algorithms over the 9 datasets. Our method improved the classification accuracy by

5.95% (Fscore), 3.46% (LLFS), 4.77% (L21RFS), 4.06 % (mRMR), 5.59% (Tracera-

tio) and 3.96% (SPFS), respectively, compared to the averaged classification accuracy425

of all competing methods over the 9 datasets. Meanwhile, our method gives a lower

standard deviation and hence more stable than the alternatives. Overall, Fscore gives

the worst performance. This may be explained by the fact that it is unable to handle

feature redundancy and is prone to select redundant features. SPFS and L21RFS both

select a feature subset in which the pairwise similarity between high dimensional sam-430
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Table 3: Study of supervised cases: aggregated SVM classification accuracy (MEAN ± STD). The last row

shows the averaged classification accuracy of all the algorithms over the 9 datasets.

Dataset Fscore LLFS L21RFS mRMR Traceratio SPFS Sup-JHLSR

Prostate-GE 91.43% 90.29% 90.24% 91.12% 91.43% 90.67% 93.65%

± 4.17 ± 3.14 ± 4.27 ± 4.54 ± 3.40 ± 4.26 ± 3.14

GLIOMA 69.65% 73.17% 70.21% 72.79% 69.65% 70.64% 74.3%

± 2.51 ± 2.66 ± 2.11 ± 2.22 ± 2.88 ± 2.88 ± 2.11

SMK-CAN 67.26% 70.1% 69.16% 68.34 % 67.26% 68.6% 70.9%

± 2.68 ± 2.86 ± 1.95 ± 2.75 ± 3.06 ± 1.94 ± 1.94

MNIST 87.42% 88.53% 85.83% 86.66 % 88.11% 88.7% 91.55%

± 1.92 ± 2.05 ± 0.78 ± 0.94 ± 1.88 ± 1.65 ± 1.26

Caltech256 40.12% 41.6% 39.83% 39.25 % 38.23% 40.18% 45.69%

± 2.29 ± 2.09 ± 0.95 ± 1.59 ± 1.65 ± 1.12 ± 1.03

Scene15 61.6% 61.38% 59.83% 65.2 % 60.85% 61.4% 74.57%

±5.06 ± 2.68 ± 4.43 ± 4.80 ± 2.46 ± 2.94 ± 2.24

ORL 80.3% 90.17% 87.62% 90.34% 80.3% 89.58% 92.04%

± 1.90 ± 2.22 ± 2.83 ± 4.98 ± 1.90 ± 2.32 ± 4.98

COIL-20 84.03% 89.3% 89.86% 83.85 % 89.23% 89.25% 90.34%

± 3.55 ± 3.28 ± 4.06 ±3.28 ± 3.30 ± 1.72 ± 3.06

ALLAML 94.36% 94% 94.25% 95.61 % 94.36% 95.1% 96.64%

± 1.702 ± 1.90 ± 1.36 ± 1.13 ± 1.13 ± 1.72 ± 1.38

AVG 75.13% 77.62% 76.31% 77.02 % 75.49% 77.12% 81.08%

ples is maximally preserved. They show inferior performance to our Sup-JHLSR. This

indicates that it is important to preserve the sample similarity in identifying discrimi-

native features when the labels of the data are known. From Fig.4 and Table. 3, we ob-

served that those methods which incorporate manifold regularization outperform these

methods that do not, i.e., our proposed method Sup-JHLSR is superior to both SPFS435

and L21RFS in terms of accuracy values for all datasets studied. A possible explana-

tion is that the manifold regularization term causes data space locality information to be

preserved in the low dimensional representations. Furthermore, it is demonstrated that

the data space geometrical information is crucial for good classification performance.
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(a) Prostate-GE dataset
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(b) GLIOMA dataset
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(c) SMK-CAN dataset
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(d) MNIST dataset
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(e) Caltech256-2000 dataset
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(f) Scene15 dataset
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(g) ORL dataset
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(h) COIL-20 dataset
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Figure 5: Accuracy rate vs. the number of selected features on 9 benchmark datasets by semi-supervised

learning.

2)Results for the Semi-supervised Case (Semi-JHLSR): The classification ac-440

curacies for the different feature subsets obtained using semi-supervised learning are

shown in Fig.5 and Table. 4. Again, we observe that our proposedmethod Semi-JHLSR

outperforms the alternatives. The aggregated SVM classification accuracy in Table. 4

also clearly shows that the proposed method outperforms each of the competing semi-

supervised methods for all datasets studied, and the improvement is in the range from445

4.02% to 25.83%. Based on these results, we observe that simultaneously preserving

both the sample similarity and the local geometric structure of data is necessary in

identifying discriminative features.
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Table 4: Study of Semi-supervised cases: aggregated SVM classification accuracy (MEAN ± STD). The

last row shows the averaged classification accuracy of all the algorithms over the 9 datasets.

Dataset LSDF Semi-TRCFS Semi-JHLSR

Prostate-GE 64.2 % ± 3.06 70.34 % ± 2.63 90.03%± 1.37

GLIOMA 58.6 % ± 3.55 60.8 % ± 3.06 73.02%± 1.95

SMK-CAN 57.4 % ± 2.68 56.9 % ± 2.36 64.23%± 0.97

MNIST 80.1 % ± 2.68 78.37 % ± 2.78 89.57%± 1.68

Caltech256 34.2 % ± 3.13 32.5 % ± 1.94 43.2%± 2.86

Scene15 59.6 % ± 3.10 62.5 % ± 3.63 71.8%± 2.78

ORL 73.66 % ± 3.95 74.28 % ± 2.33 81.85%± 0.49

COIL-20 78.76 % ± 2.50 73.26 % ± 2.82 82.78%± 0.88

ALLAML 84.57 % ± 3.32 80.89 % ± 2.78 93.11%± 4.33

AVG 65.68 % 65.54 % 76.62%

3)Results for the Unsupervised Case (Un-JHLSR): From Fig.6, the proposed

method Un-JHLSR still maintains the best classification accuracy on each of the 9450

benchmark data sets. The aggregated SVM classification accuracy of different algo-

rithms on each data set is shown in Table. 5. From the results, we draw the following

two observations: (1) Firstly, the joint manifold characterization and feature selection

methods outperform the methods which separate these two procedures, i.e., Un-JHLSR

and JELSR are superior to MCFS and LapScore in terms of accuracy in most cases.455

(2) Secondly, the proposed method Un-JHLSR shows a significant improvement over

the graph based method JELSR. There are three reasons for this improvement in per-

formance. First, The local structure in JELSR is based on a k-nearest neighbor graph,

while UN-JHLSR leans a hypergraph. Compared with graph regularization, hyper-

graph regularization imposes a much stronger constraint on the data samples. Instead460

of approximating them in terms of pairwise interactions which can lead to a substantial

loss of information, the hypergraph representation is effective in capturing the high-

order relations among samples. Thus the structural information latent in the data can

be effectively preserved. Second, JELSR iteratively performs spectral embedding for
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(a) Prostate-GE dataset
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(b) GLIOMA dataset
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(c) SMK-CAN dataset

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
MNIST

C
−

S
V

M
 c

la
s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y

Num of selected feature

 

 

SPEC

JELSR

MCFS

LapScore

Un−JHLSR

(d) MNIST dataset
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(e) Caltech256-2000 dataset
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(f) Scene15 dataset
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(g) ORL dataset
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(h) COIL-20 dataset
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Figure 6: Accuracy rate vs. the number of selected features on 9 benchmark datasets by unsupervised

learning.

clustering and sparse spectral regression for feature selection. However, the local struc-465

ture itself (i.e. the Laplacian matrix) is not changed during iterations of the algorithm.

Our proposed method JHLSR can adaptively improve the local structure by learning

the weights of hypergraph. Third, unlike JELSR which only incorporating the local

manifold structure, our proposed method JHLSR integrates the merits of local mani-

fold structure and global discriminative sample similarity. Thus, it performs better than470

the traditional methods.

Taken together, the above experimental results for the supervised, unsupervised,

and semi-supervised feature selection modalities demonstrate the effectiveness and ef-

30



Table 5: Study of Unsupervised cases: aggregated SVM classification accuracy (MEAN ± STD). The last

row shows the averaged classification accuracy of all the algorithms over the 9 datasets.

Dataset SPEC JELSR MCFS LapScore Un-JHLSR

Prostate-GE 83.32% 86.2% 79.3% 78.4% 88.04%

± 2.29 ± 2.09 ± 2.19 ± 1.16 ± 1.65

GLIOMA 52.75% 51.38% 52.88% 52.65% 54.78%

± 3.33 ± 3.80 ± 2.27 ± 2.33 ± 2.03

SMK-CAN 52.5% 53.7% 50.52% 51.9% 55.23%

± 2.25 ± 3.24 ± 2.03 ± 1.82 ± 3.95

MNIST 78.89% 78.21% 78.93% 78.95% 80.45%

± 2.03 ± 2.21 ± 2.03 ± 2.90 ± 1.70

Caltech256 34.9% 33.7% 35.1% 31.8% 40.12%

± 2.50 ± 3.59 ± 3.35 ± 3.95 ± 2.39

Scene15 57.92% 54.75% 58.45% 50.2% 66.8%

± 3.33 ± 3.04 ± 2.34 ± 3.23 ± 2.52

ORL 72.12% 73.3% 72.84% 72.9% 76.2%

± 3.10 ± 3.13 ± 1.35 ± 3.74 ± 2.60

COIL-20 62.36% 64.93% 65.13% 65.42% 71.6%

±4.16 ±4.75 ±5.06 ±2.97 ±3.23

ALLAML 70.25% 76.25% 73.4% 71.54% 81.38%

± 0.95 ± 1.12 ± 2.29 ± 1.59 ± 1.03

AVG 62.78% 63.60% 62.95% 61.53% 68.29%

ficiency of the proposed JHLSR framework.

7.4. Convergence Results475

In this section, we provide some numerical results to illustrate the convergence

behavior of our algorithm JHLSR. Two datasets, i.e., COIL-20 and GLIOMA, are em-

ployed. Since S is used for feature selection, we would like to measure the variance

between two sequential S using the following metric:

Error(t) = ∥St+1 − St∥22 (29)
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Figure 7: Convergence behavior of JHLSR. There are mainly 20 iterations. x-axis represents the number of

iterations and y-axis represents the divergence between two sonsecutive S measure by Eq.29. As observed,

JHLSR always converge within 4 iterations.

As seen from Fig.7, the divergence between two consecutive S converges to zero,

which means that the final results will not be changed drastically. Convergence is

fast, requiring less than 4 iterations.

7.5. Effect of Adaptive Structure Learning by Hypergraph

To further illustrate the effectiveness of JHLSR in preserving the local manifold480

structure of the data, we compare JHLSR with regular hypergraph learning (HYPER)

[21] (i.e. with no learning of the hyperedge weights) and a graph based version of

the proposed algorithm (referred to as GRAPH). The main experimental results are

presented in Fig.8 and a few interesting observations can be made. First, JHLSR con-

sistently outperforms HYPER and GRAPH on all the datasets studied. The main rea-485

son is that JHLSR can represent diverse relations among data samples, and adaptively

improve the local structure from the results of hypergraph learning. Second, JHLSR

consistently performs better than the conventional hypergraph learning algorithm (i.e.

HYPER), and this result suggests that the simultaneous learning of hyperedge weights

and feature selection is a better strategy. Third, for the supervised case, there are few490

differences among the three methods, since the label information is more crucial than

modeling the local manifold structure of data for the subsequent classification task.
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(a) Caltech256: Supervised

case
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(b) Caltech256: Semi-

supervised case
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(c) Caltech256: Un-

supervised case
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(d) Scene15: Supervised

case
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(e) Scene15: Semi-

supervised case
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(f) Scene15: Un-supervised

case
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(g) SMK-CAN: Supervised

case
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(h) SMK-CAN: Semi-

supervised case
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Figure 8: Accuracy rate vs. the number of selected features on three benchmark datasets by different methods

(JHLSR,HYPER,GRAPH).

However, in the semi-supervised and unsupervised cases, JHLSR gains a significant

improvement over HYPER and GRAPH. This is because when the labeled data are

scarce, feature selection aims to select the features that well maintain the underlying lo-495

cal manifold structure. In this case, the local structure itself (i.e. the Laplacian matrix)

in HYPER is not changed during iterations of the algorithm. JHLSR can adaptively

improve the local manifold structure by updating the hyperedge weights.
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7.6. Effect of Hypergraph Learning

In this section, we will evaluate the effectiveness of hypergraph construction using500

the sparse representation model and hyperedge weight learning.
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Figure 9: Classification accuracy w.r.t. the use of different number of λ values in Eq.13.

To investigate the effect of different numbers of λ values (in Eq.13) on the classifi-

cation performance of the proposed method, we test 10 groups of λ values, i.e., {0.1},

{0.1, 0.2}, {0.1, 0.2, 0.3}, . . ., {0.1, 0.2, . . . , 0.9}, {0.1, 0.2, . . . , 0.9, 1}. Fig.9 gives

the classification results. The figure shows that with an increase in the number of λ505

values, the classification accuracy first increases to a high value and then decreases, fi-

nally converges to a highest value and reaches a steady state. This observation verifies

that the range (0.1 : 0.9) is enough for λ in Eq.13.

Hypergraph construction using the sparse representation model will produce some

redundant hyperedges. Therefore, in order to regulate the effects of different hyper-510

edges, we place a regularizer (i.e.
m
∑

j=1

W j
H = 1 and W j

H ≥ 0) on the hyperedge

weights. In this way, the effects of different hyperedges can be adaptively regulated

and useless or redundant hyperedges can be discarded (i.e., the weights of redundant

hyperedges will ideally be 0), and thus, we can select the most effective hyperedges.

Fig.10 visualizes the values of the hyperedge weights on the six data sets. It is clear515

that different hyperedges have different weights and some hyperedge weights are 0.

For clear comparison, we illustrate the number of non-zero weight hyperedges dur-

34



0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Hyperedge Index

W
e
ig

h
t 
V

a
lu

e

Prostate−GE

(a) Prostate-GE dataset
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(b) GLIOMA dataset
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(c) SMK-CAN dataset
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Figure 10: Illustration of the learned hyperedge weights in the proposed method.

ing learning in Fig.11. As demonstrated in Fig.11, the number of non-zero weight

hyperedges iteratively decreases until reaching a steady state. Therefore, only a very

small number of hyperedges are preserved after learning. The results further verify the520

effectiveness of hypergraph learning.

8. Conclusion

In this paper, we have proposed a hypergraph learning approach for feature selec-

tion, aimed at capturing higher order sample relations in sets of data. The approach

not only incorporates a robust hyperedge construction method, but also allows for the525

simultaneously learning of hyperedge weights and feature selection based on matrix

sparsification. The learned hyperedges weight are shown to better characterize the

manifold structure of the data. Experimental results for the cases of supervised, unsu-

pervised and semi-supervised feature selection demonstrate both the effectiveness and

efficiency of the proposed JHLSR framework.530

There are a number of shortcomings of the proposed method, which we aim to

address in future work. Firstly the JHLSR method has three parameters that need to be
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Figure 11: Illustration of the number of non-zero weight of hyperedges with iterations.

hand-tuned, and which is computationally cumbersome for real world applications. To

reduce this burden, we will replace the convex regularizations on S andWH with ℓ20

or ℓ0 norm. Secondly, both the global and local structures (i.e. K and LH ) in JHLSR535

are based on all the available features. We will investigate how to refine the estimation

of these structures using the selected features.

At a more ambitious level, it would also be interesting to explore whether the semi-

supervised approach to feature selection presented here could be cast into the harmonic

framework [42]. This would provide a natural way of learning the hyper graph weights540

in a semi-supervised setting.

Appendix A. Proof of Theorem 1

We prove that the proposed Algorithm 1 makes the values of the objective function

in Eq.20 monotonically decrease. We first give a Lemma [5] as follows, which will be

used in our proof.545

Lemma 1: For any nonzero vectors a,b ∈ ℜd, the following result follows:

∥a∥2 −
∥a∥22
2∥b∥2

≤ ∥b∥2 −
∥b∥22
2∥b∥2

(A.1)

Proof: For any nonzero vectors a,b ∈ ℜd, there exists

∥a∥2∥b∥2 ≤
1

2
(∥a∥22 + ∥b∥22) (A.2)

For any b ̸= 0, we have

∥a∥2 ≤
1

2

∥a∥22
∥b∥2

+
1

2

∥b∥22
∥b∥2

(A.3)
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By Eq.A.3, we obtain

∥a∥2 −
1

2

∥a∥22
∥b∥2

≤
1

2

∥b∥22
∥b∥2

(A.4)

This completes the proof.

According to [43, 44, 45, 10], optimizing the non-smooth convex form ∥S∥2,1 can

be transferred to iteratively optimize U and S in tr(STUS). As seen from the Step 1

in Algorithm 1, when we fix U as U t1 in the t1-th iteration and update S
t1+1, Eq.20

can be rewritten as550

St1+1 = argmin
S

{

∥AXS − Φ∥2F + µtr(STXT L̂HXS) + λtr(STU t1S)

}

(A.5)

and the following inequality holds:

∥AXSt1+1 − Φ∥2F + µtr
(

(St1+1)TXT L̂HXSt1+1
)

+ λtr
(

(St1+1)TU t1St1+1
)

! ∥AXSt1 − Φ∥2F + µtr
(

(St1)TXT L̂HXSt1
)

+ λtr
(

(St1)TU t1St1
)

(A.6)

Since Uii = 1
2∥ŝi∥2

and the inequality in ∥S∥2,1 =
∑d

i=1 ∥ŝi∥2, then Eq.A.6 can be

rewritten as

∥AXSt1+1 − Φ∥2F + µtr
(

(St1+1)TXT L̂HXSt1+1
)

+ λ

d
∑

i=1

∥ŝt1+1
i ∥22

2∥ŝt1i ∥2

! ∥AXSt1 − Φ∥2F + µtr
(

(St1)TXT L̂HXSt1
)

+ λ

d
∑

i=1

∥ŝt1i ∥22
2∥ŝt1i ∥2

(A.7)

Recalling the result gain in Lemma 1, we know that

d
∑

i=1

∥ŝt1+1
i ∥2 −

d
∑

i=1

∥ŝt1+1
i ∥22

2∥ŝt1i ∥2
!

d
∑

i=1

∥ŝt1i ∥2 −

d
∑

i=1

∥ŝt1i ∥22
2∥ŝt1i ∥2

(A.8)

Based on Eq.A.7 and Eq.A.8, we have the following result:555

∥AXSt1+1 − Φ∥2F + µtr
(

(St1+1)TXT L̂HXSt1+1
)

+ λ∥St1+1∥2,1

! ∥AXSt1 − Φ∥2F + µtr
(

(St1)TXT L̂HXSt1
)

+ λ∥St1∥2,1 (A.9)

This inequality indicates that function in Eq.20 will monotonically decrease in each

iteration. Therefore, Step 1 in Algorithm 1 will converge.
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Appendix B. Proof of Theorem 2

Lemma 2: For any nonzero vectors x and y, we attempt to solve the following opti-

mization problem:

min
x,y

γ(x2 + y2) + ax+ by

s.t. x+ y= c, x ≥ 0, y ≥ 0 (B.1)

Hence, we have the optimal solution of the above problem as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x = 0, y = c, if − b−a−2γc
4γ ≥ c

x = c, y = 0, if − b−a−2γc
4γ ≤ 0

x = 2γc+b−a
4γ , else

y = c− x

(B.2)

Proof: Since x = c− y, we add it into the objective function Eq.B.1, then we have

min
y

γ(c− y)2 + γy2 + a(c− y) + by (B.3)

Rewriting the above optimization problem in Eq.B.3 as

min
y

{

2γy2 + (b− a− 2γc)y + γc2 + ac

}

(B.4)

the following optimal solutions hold:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

y = c, if − b−a−2γc
4γ ≥ c

y = 0, if − b−a−2γc
4γ ≤ 0

y = − b−a−2γc
4γ , else

(B.5)

This completes the proof.

When we fix S and solve forWH , the objective function in Eq.19 can be rewritten

as

min
WH

{

− µtr(RWHD−1
e RT ) + γ∥diag(WH)∥2

}

(B.6)

where R = STXTD
−1

2
v H . The aforementioned problem can be solved using an al-560

ternating optimization process. By using a coordinate descent algorithm, we develop

an iterative process that alternately updates the sparse matrix S and the weight value
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WH . At each iteration, two elements are selected for updating, whereas the remaining

are left fixed. For example, in t2-th iteration, the p-th and the q-th elements, i.e., W
p
H

andW q
H , are selected. After the iteration, we updateW

p
H and W q

H as W p∗
H andW q∗

H565

respectively (see Eq.27).

Recalling the results in Lemma 2, we know that if we let b = µSq , a = µSp,

x = W p
H and y = W q

H , we have

(W p∗
H ,W q∗

H ) = min
Wp

H
,W q

H

−µ

(

W p
H

(

m
∑

i=1

(rpi )
2
)

δ(ep)
−1 +

W q
H

(

m
∑

i=1

(rqi )
2
)

δ(eq)
−1

)

+ γ(W p2
H +W q2

H ) (B.7)

Therefore, the following inequality holds:

−µ

(

W p∗
H

(

m
∑

i=1

(rpi )
2
)

δ(ep)
−1 +W q∗

H

(

m
∑

i=1

(rqi )
2
)

δ(eq)
−1

)

+ γ(W p∗2
H +W q∗2

H )

! −µ

(

W p
H

(

m
∑

i=1

(rpi )
2
)

δ(ep)
−1 +W q

H

(

m
∑

i=1

(rqi )
2
)

δ(eq)
−1

)

+ γ(W p2
H +W q2

H )(B.8)

As seen from Eq.B.8, since each step decreases the objective function, the convergence570

of the alternating optimization process is guaranteed. As a result, the objective function

Eq.19 has a global optimum solution.
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