594 research outputs found

    Perfecting one-loop BCJ numerators in SYM and supergravity

    Full text link
    We take a major step towards computing DD-dimensional one-loop amplitudes in general gauge theories, compatible with the principles of unitarity and the color-kinematics duality. For nn-point amplitudes with either supersymmetry multiplets or generic non-supersymmetric matter in the loop, simple all-multiplicity expressions are obtained for the maximal cuts of kinematic numerators of nn-gon diagrams. At n=6,7n=6,7 points with maximal supersymmetry, we extend the cubic-diagram numerators to encode all contact terms, and thus solve the long-standing problem of \emph{simultaneously} realizing the following properties: color-kinematics duality, manifest locality, optimal power counting of loop momenta, quadratic rather than linearized Feynman propagators, compatibility with double copy as well as all graph symmetries. Color-kinematics dual representations with similar properties are presented in the half-maximally supersymmetric case at n=4,5n=4,5 points. The resulting gauge-theory integrands and their supergravity counterparts obtained from the double copy are checked to reproduce the expected ultraviolet divergences.Comment: 55 pages; Dedicated to the memory of Lars Brin

    Monte-Carlo simulations of thermal/nonthermal radiation from a neutron-star magnetospheric accretion shell

    Full text link
    We discuss the space-and-time-dependent Monte Carlo code we have developed to simulate the relativistic radiation output from compact astrophysical objects, coupled to a Fokker-Planck code to determine the self-consistent lepton populations. We have applied this code to model the emission from a magnetized neutron star accretion shell near the Alfven radius, reprocessing the radiation from the neutron sar surface. We explore the parameter space defined by the accretion rate, stellar surface field and the level of wave turbulence in the shell. Our results are relevant to the emission from atoll sources, soft-X-ray transient X-ray binaries containing weakly magnetized neutron stars, and to recently suggested models of accretion-powered emission from anomalous X-ray pulsars.Comment: 24 pages, including 7 figures; uses epsf.sty. final version, accepted for publication in ApJ. Extended introduction and discussio

    Radiation from Comoving Poynting Flux Acceleration

    Full text link
    We derive analytic formulas for the radiation power output when electrons are accelerated by a relativistic comoving kinetic Poynting flux, and validate these analytic results with Particle-In-Cell simulations. We also derive analytically the critical frequency of the radiation spectrum. Potential astrophysical applications of these results are discussed. A quantitative model of gamma-ray bursts based on the breakout of kinetic Poynting flux is presented.Comment: 30 pages 8 figures, resubmitted to ApJ, replaces earlier preprint titled "Radiation from Kinetic Poynting Flux Acceleration" (arXiV:0704.1843); most of the paper has been rewritte

    Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures.

    Get PDF
    We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure

    Inferring Meal Eating Activities in Real World Settings from Ambient Sounds: A Feasibility Study

    Get PDF
    Copyright ©2015 ACMDOI: 10.1145/2678025.2701405Dietary self-monitoring has been shown to be an effective method for weight-loss, but it remains an onerous task despite recent advances in food journaling systems. Semi-automated food journaling can reduce the effort of logging, but often requires that eating activities be detected automatically. In this work we describe results from a feasibility study conducted in-the-wild where eating activities were inferred from ambient sounds captured with a wrist-mounted device; twenty participants wore the device during one day for an average of 5 hours while performing normal everyday activities. Our system was able to identify meal eating with an F-score of 79.8% in a person-dependent evaluation, and with 86.6% accuracy in a person-independent evaluation. Our approach is intended to be practical, leveraging off-the-shelf devices with audio sensing capabilities in contrast to systems for automated dietary assessment based on specialized sensors

    RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses

    Get PDF
    The human gut is known to be a reservoir of a wide variety of microbes, including viruses. Many RNA viruses are known to be associated with gastroenteritis; however, the enteric RNA viral community present in healthy humans has not been described. Here, we present a comparative metagenomic analysis of the RNA viruses found in three fecal samples from two healthy human individuals. For this study, uncultured viruses were concentrated by tangential flow filtration, and viral RNA was extracted and cloned into shotgun viral cDNA libraries for sequencing analysis. The vast majority of the 36,769 viral sequences obtained were similar to plant pathogenic RNA viruses. The most abundant fecal virus in this study was pepper mild mottle virus (PMMV), which was found in high concentrations—up to 10(9) virions per gram of dry weight fecal matter. PMMV was also detected in 12 (66.7%) of 18 fecal samples collected from healthy individuals on two continents, indicating that this plant virus is prevalent in the human population. A number of pepper-based foods tested positive for PMMV, suggesting dietary origins for this virus. Intriguingly, the fecal PMMV was infectious to host plants, suggesting that humans might act as a vehicle for the dissemination of certain plant viruses

    Prostate Cancer Stem Cell-Targeted Efficacy of a New-Generation Taxoid, SBT-1214 and Novel Polyenolic Zinc-Binding Curcuminoid, CMC2.24

    Get PDF
    Background Prostate cancer is the second leading cause of cancer death among men. Multiple evidence suggests that a population of tumor-initiating, or cancer stem cells (CSCs) is responsible for cancer development and exceptional drug resistance, representing a highly important therapeutic target. The present study evaluated CSC-specific alterations induced by new-generation taxoid SBT-1214 and a novel polyenolic zinc-binding curcuminoid, CMC2.24, in prostate CSCs. Principal Findings The CD133high/CD44high phenotype was isolated from spontaneously immortalized patient-derived PPT2 cells and highly metastatic PC3MM2 cells. Weekly treatment of the NOD/SCID mice bearing PPT2- and PC3MM3-induced tumors with the SBT-1214 led to dramatic suppression of tumor growth. Four of six PPT2 and 3 of 6 PC3MM2 tumors have shown the absence of viable cells in residual tumors. In vitro, SBT-1214 (100nM-1µM; for 72 hr) induced about 60% cell death in CD133high/CD44+/high cells cultured on collagen I in stem cell medium (in contrast, the same doses of paclitaxel increased proliferation of these cells). The cytotoxic effects were increased when SBT-1214 was combined with the CMC2.24. A stem cell-specific PCR array assay revealed that this drug combination mediated massive inhibition of multiple constitutively up-regulated stem cell-related genes, including key pluripotency transcription factors. Importantly, this drug combination induced expression of p21 and p53, which were absent in CD133high/CD44high cells. Viable cells that survived this treatment regimen were no longer able to induce secondary spheroids, exhibited significant morphological abnormalities and died in 2-5 days. Conclusions We report here that the SBT-1214 alone, or in combination with CMC2.24, possesses significant activity against prostate CD133high/CD44+/high tumor-initiating cells. This drug combination efficiently inhibits expression of the majority of stem cell-related genes and pluripotency transcription factors. In addition, it induces a previously absent expression of p21 and p53 (“gene wake-up”), which can potentially reverse drug resistance by increasing sensitivity to anti-cancer drugs

    High-resolution deconstruction of evolution induced by chemotherapy treatments in breast cancer xenografts.

    Get PDF
    The processes by which tumors evolve are essential to the efficacy of treatment, but quantitative understanding of intratumoral dynamics has been limited. Although intratumoral heterogeneity is common, quantification of evolution is difficult from clinical samples because treatment replicates cannot be performed and because matched serial samples are infrequently available. To circumvent these problems we derived and assayed large sets of human triple-negative breast cancer xenografts and cell cultures from two patients, including 86 xenografts from cyclophosphamide, doxorubicin, cisplatin, docetaxel, or vehicle treatment cohorts as well as 45 related cell cultures. We assayed these samples via exome-seq and/or high-resolution droplet digital PCR, allowing us to distinguish complex therapy-induced selection and drift processes among endogenous cancer subclones with cellularity uncertaint
    corecore