104 research outputs found

    Construction of the Femoral Neck During Growth Determines its Strength in Old Age

    Get PDF
    Study of the design of the FN in vivo in 697 women and in vitro in 200 cross-sections of different sizes and shapes along each of 13 FN specimens revealed that strength in old age was largely achieved during growth by differences in the distribution rather than the amount of bone material in a given FN cross-section from individual to individual. Introduction: We studied the design of the femoral neck (FN) to gain insight into the structural basis of FN strength in adulthood and FN fragility in old age. Materials and Methods: Studies in vivo were performed using densitometry in 697 women and in vitro using high-resolution μCT and direct measurements in 13 pairs of postmortem specimens. Results: The contradictory needs of strength for loading yet lightness for mobility were met by varying FN size, shape, spatial distribution, and proportions of its trabecular and cortical bone in a cross-section, not its mass. Wider and narrower FNs were constructed with similar amounts of bone material. Wider FNs were relatively lighter: a 1 SD higher FN volume had a 0.67 (95% CI, 0.61-0.72) SD lower volumetric BMD (vBMD). A 1 SD increment in height was achieved by increasing FN volume by 0.32 (95% CI, 0.25-0.39) SD with only 0.15 (95% CI, 0.08-0.22) SD more bone, so taller individuals had a relatively lighter FN (vBMD was 0.13 [95% CI, 0.05-0.20 SD] SD lower). Greater periosteal apposition constructing a wider FN was offset by even greater endocortical resorption so that the same net amount of bone was distributed as a thinner cortex further from the neutral axis, increasing resistance to bending and lowering vBMD. This was recapitulated at each point along the FN; varying absolute and relative degrees of periosteal apposition and endocortical resorption focally used the same amount of material to fashion an elliptical FN of mainly cortical bone near the femoral shaft to offset bending but a more circular FN of proportionally more trabecular and less cortical bone to accommodate compressive loads adjacent to the pelvis. This structural heterogeneity was largely achieved by adaptive modeling and remodeling during growth-most of the variance in FN volume, BMC, and vBMD was growth related. Conclusions: Altering structural design while minimizing mass achieves FN strength and lightness. Bone fragility may be the result of failure to adapt bone's architecture to loading, not just low bone mass

    Closing a gap in tropical forest biomass estimation : taking crown mass variation into account in pantropical allometries

    Get PDF
    Accurately monitoring tropical forest carbon stocks is a challenge that remains outstanding. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference model in the coming years. However, this reference model shows a systematic bias towards the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass data set of 673 trees destructively sampled in five tropical countries (101 trees > 100 cm in diameter) and an original data set of 130 forest plots (1 ha) from central Africa to quantify the prediction error of biomass allometric models at the individual and plot levels when explicitly taking crown mass variations into account or not doing so. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees = 45 Mg. This increase coincided with a progressive deviation between the pantropical biomass model estimations and actual tree mass. Taking a crown mass proxy into account in a newly developed model consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot- level error (in %) from [-23; 16] to [0; 10]. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far- from- negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by taking a crown mass proxy for the largest trees in a stand into account, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost

    Reduced Quantitative Ultrasound Bone Mineral Density in HIV-Infected Patients on Antiretroviral Therapy in Senegal

    Get PDF
    Background: Bone status in HIV-infected patients on antiretroviral treatment (ART) is poorly documented in resource-limited settings. We compared bone mineral density between HIV-infected patients and control subjects from Dakar, Senegal. Methods: A total of 207 (134 women and 73 men) HIV-infected patients from an observational cohort in Dakar (ANRS 1215) and 207 age-and sex-matched controls from the general population were enrolled. Bone mineral density was assessed by quantitative ultrasound (QUS) at the calcaneus, an alternative to the reference method (i.e. dual X-absorptiometry), often not available in resource-limited countries. Results: Mean age was 47.0 (+/- 8.5) years. Patients had received ART for a median duration of 8.8 years; 45% received a protease inhibitor and 27% tenofovir; 84% had undetectable viral load. Patients had lower body mass index (BMI) than controls (23 versus 26 kg/m(2), P<0.001). In unadjusted analysis, QUS bone mineral density was lower in HIV-infected patients than in controls (difference: -0.36 standard deviation, 95% confidence interval (CI): -0.59;-0.12, P = 0.003). Adjusting for BMI, physical activity, smoking and calcium intake attenuated the difference (-0.27, CI: -0.53; -0.002, P = 0.05). Differences in BMI between patients and controls explained a third of the difference in QUS bone mineral density. Among patients, BMI was independently associated with QUS bone mineral density (P<0.001). An association between undetectable viral load and QUS bone density was also suggested (beta = 0.48, CI: 0.02; 0.93; P = 0.04). No association between protease inhibitor or tenofovir use and QUS bone mineral density was found. Conclusion: Senegalese HIV-infected patients had reduced QUS bone mineral density in comparison with control subjects, in part related to their lower BMI. Further investigation is needed to clarify the clinical significance of these observations

    Genome-Wide Association Meta-Analysis of Cortical Bone Mineral Density Unravels Allelic Heterogeneity at the RANKL Locus and Potential Pleiotropic Effects on Bone

    Get PDF
    Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD). However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone mineral density (BMDC) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct biological and genetic control. We have carried out a GWA and replication study of BMDC, as measured by peripheral quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density. After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged ∼15 years and GOOD n = 935, aged ∼19 years), we attempted to replicate the BMDC associations that had p<1×10−5 in an independent sample of ALSPAC children (n = 2803) and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (near RANKL) was associated with BMDC in all cohorts (overall p = 2×10−14, n = 5739). Each minor allele was associated with a decrease in BMDC of ∼0.14SD. There was also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age 15, males −6.77mg/cm3 per C allele, p = 2×10−6; females −2.79 mg/cm3 per C allele, p = 0.004). Furthermore, in a preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p<0.005). We show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicates RANKL as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by which the RANK/RANKL/OPG pathway may be involved in skeletal development

    LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa

    Get PDF
    Accurate mapping and monitoring of tropical forests aboveground biomass (AGB) is crucial to design effective carbon emission reduction strategies and improving our understanding of Earth’s carbon cycle. However, existing large-scale maps of tropical forest AGB generated through combinations of Earth Observation (EO) and forest inventory data show markedly divergent estimates, even after accounting for reported uncertainties. To address this, a network of high-quality reference data is needed to calibrate and validate mapping algorithms. This study aims to generate reference AGB datasets using field inventory plots and airborne LiDAR data for eight sites in Central Africa and five sites in South Asia, two regions largely underrepresented in global reference AGB datasets. The study provides access to these reference AGB maps, including uncertainty maps, at 100 m and 40 m spatial resolutions covering a total LiDAR footprint of 1,11,650 ha [ranging from 150 to 40,000 ha at site level]. These maps serve as calibration/validation datasets to improve the accuracy and reliability of AGB mapping for current and upcoming EO missions (viz., GEDI, BIOMASS, and NISAR)

    Osteoporosis: the current status of mesenchymal stem cell-based therapy

    Full text link

    Unmet needs and current and future approaches for osteoporotic patients at high risk of hip fracture

    Full text link

    Innovation in analog flow controller design

    No full text
    No Abstract.Nigerian Journal of Physics Vol. 20 (1) 2008: pp.69-7

    Differences in the degree of bone tissue mineralization account for little of the differences in tissue elastic properties

    No full text
    Mini-abstract: Study of postmortem samples of cortical bone from the trochanters of 12 Caucasian females revealed that tissue mineral density (TMD) and tissue elastic modulus correlate weakly within and between individuals. Other material properties nee
    • …
    corecore