166 research outputs found

    Predicting and Comparing the Retention and Turnover Intention of Generations X and Y at Selected Service Companies in Sri Lanka

    Get PDF
    The generation gap has impacted a much higher turnover in the generation Y than in generation X during the previous years. It has impacted in achieving a healthy working environment at organizations to achieve the organizational goals. Hence it was needed to identify on what factors does the turnover rate of generation ‘y’ has increased than in generation ‘x’ within organizations and to predict which employees will retain and leave from the organizations during the next year. This study is based on a quantitative research type. A survey was used as the main research strategy and the study is based on deductive research approach. The population of the study was 1298 employees who belong to the two generations ‘x’ and ‘y’ of selected private companies which operate under the service category in Sri Lanka. The target sample of the study was 297 and the researchers were able to fulfil their requirement. The collected data were analyzed using descriptive analysis, multiple linear regression and binary logistic regression using SPSS. It was found that differences in characteristics of the two generations and the behaviors of them had influenced a higher turnover intention in generation ‘y’ than in generation ‘x’. It was specifically noted that the three independent variables had a positive impact on the retention and intention to leave of the two generations at workplaces separately. The results will be of utmost importance for employers to predict the retention and turnover intention of employees and for employees to have faith and continue the career providing the best to fulfill the organization’s needs. Hence, this concept could be recognized as a key factor to drive the quality in both employers and employees while achieving sustainability to have a healthy working environment. The main limitation of the study was that only two generations were taken into consideration. Therefore, it is recommended for future researchers to have research studies on upcoming generations at workplaces to identify the generational behavior. Keywords: Sustainable HRM, Generation ‘X’, Generation ‘Y’, Predictive Analysi

    A fluorometric method for the quantification of cell number in complex differentiating osteoblast-osteocyte cultures

    Get PDF
    Osteoblast/osteocyte cultures continue to emerge as essential tools for bone biology research in vitro. The change in cell number is an important parameter to be considered for investigating osteogenic differentiation. However, there is no reliable method for quantifying absolute cell count in differentiating osteoblast/osteocyte cultures because of their strongly adherent, multi-layered, super-confluent nature, and their accumulated extracellular matrix production which progressively mineralises in vitro. We developed a practical, simple and cost-effective method based on the fluorometric quantification of a nucleic dye, GelRed™, to enumerate cell number in osteoblast/osteocyte cultures. This method may also be suitable for quantifying cell numbers on other mammalian adherent cell typesDongqing Yang, Asiri R. Wijenayaka and Gerald J. Atkin

    Deletion of a Single beta-Catenin Allele in Osteocytes Abolishes the Bone Anabolic Response to Loading

    Get PDF
    The Wnt/β-catenin signaling pathway is essential for bone cell viability and function and for skeletal integrity. To determine if β-catenin in osteocytes plays a role in the bone anabolic response to mechanical loading, 18- to 24-week-old osteocyte β-catenin haploinsufficient mice (Dmp1-Cre × β-catenin fl/ + ; HET cKO) were compared with their β-catenin fl/fl (control) littermates. Trabecular bone volume (BV/TV) was significantly less (58.3%) in HET cKO females versus controls, whereas male HET cKO and control mice were not significantly different. Trabecular number was significantly less in HET cKO mice compared with controls for both genders, and trabecular separation was greater in female HET cKO mice. Osteoclast surface was significantly greater in female HET cKO mice. Cortical bone parameters in males and females showed subtle or no differences between HET cKO and controls. The right ulnas were loaded in vivo at 100 cycles, 2 Hz, 2500 µϵ, 3 days per week for 3 weeks, and the left ulnas served as nonloaded controls. Calcein and alizarin complexone dihydrate were injected 10 days and 3 days before euthanization, respectively. Micro-computed tomography (µCT) analysis detected an 8.7% and 7.1% increase in cortical thickness in the loaded right ulnas of male and female control mice, respectively, compared with their nonloaded left ulnas. No significant increase in new cortical bone formation was observed in the HET cKO mice. Histomorphometric analysis of control mice showed a significant increase in endocortical and periosteal mineral apposition rate (MAR), bone-formation rate/bone surface (BFR/BS), BFR/BV, and BFR/TV in response to loading, but no significant increases were detected in the loaded HET cKO mice. These data show that deleting a single copy of β-catenin in osteocytes abolishes the anabolic response to loading, that trabecular bone in females is more severely affected and suggest that a critical threshold of β-catenin is required for bone formation in response to mechanical loading

    Recombinant sclerostin antagonizes effects of ex vivo mechanical loading in trabecular bone and increases osteocyte lacunar size

    Get PDF
    Sclerostin has emerged as an important regulator of bone mass. We have shown that sclerostin can act by targeting late osteoblasts/osteocytes to inhibit bone mineralization and to upregulate osteocyte expression of catabolic factors, resulting in osteocytic osteolysis. Here we sought to examine the effect of exogenous sclerostin on osteocytes in trabecular bone mechanically loaded ex vivo. Bovine trabecular bone cores, with bone marrow removed, were inserted into individual chambers and subjected to daily episodes of dynamic loading. Cores were perfused with either osteogenic media alone or media containing human recombinant sclerostin (rhSCL) (50 ng/ml). Loaded control bone increased in apparent stiffness over time compared with unloaded bone, and this was abrogated in the presence of rhSCL. Loaded bone showed an increase in calcein uptake as a surrogate of mineral accretion, compared with unloaded bone, in which this was substantially inhibited by rhSCL treatment. Sclerostin treatment induced a significant increase in the ionized calcium concentration in the perfusate and the release of -CTX at several time points, an increased mean osteocyte lacunar size, indicative of osteocytic osteolysis, and the expression of catabolism-related genes. Human primary osteocyte-like cultures treated with rhSCL also released -CTX from their matrix. These results suggest that osteocytes contribute directly to bone mineral accretion, and to the mechanical properties of bone. Moreover, it appears that sclerostin, acting on osteocytes, can negate this effect by modulating the dimensions of the lacunocanalicular porosity and the composition of the periosteocyte matrix

    Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway

    Get PDF
    Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL) and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL) mRNA and down-regulated that of osteoprotegerin (OPG) mRNA, causing an increase in the RANKL∶OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC) were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold) compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner

    Novel insights into Staphylococcus aureus deep bone infections: the involvement of osteocytes

    Get PDF
    Periprosthetic joint infection (PJI) is a potentially devastating complication of orthopedic joint replacement surgery. PJI with associated osteomyelitis is particularly problematic and difficult to cure. Whether viable osteocytes, the predominant cell type in mineralized bone tissue, have a role in these infections is not clear, although their involvement might contribute to the difficulty in detecting and clearing PJI. Here, using Staphylococcus aureus, the most common pathogen in PJI, we demonstrate intracellular infection of human-osteocyte-like cells in vitro and S. aureus adaptation by forming quasi-dormant small-colony variants (SCVs). Consistent patterns of host gene expression were observed between in vitro-infected osteocyte-like cultures, an ex vivo human bone infection model, and bone samples obtained from PJI patients. Finally, we confirm S. aureus infection of osteocytes in clinical cases of PJI. Our findings are consistent with osteocyte infection being a feature of human PJI and suggest that this cell type may provide a reservoir for silent or persistent infection. We suggest that elucidating the molecular/cellular mechanism(s) of osteocyte-bacterium interactions will contribute to better understanding of PJI and osteomyelitis, improved pathogen detection, and treatment.IMPORTANCE Periprosthetic joint infections (PJIs) are increasing and are recognized as one of the most common modes of failure of joint replacements. Osteomyelitis arising from PJI is challenging to treat and difficult to cure and increases patient mortality 5-fold. Staphylococcus aureus is the most common pathogen causing PJI. PJI can have subtle symptoms and lie dormant or go undiagnosed for many years, suggesting persistent bacterial infection. Osteocytes, the major bone cell type, reside in bony caves and tunnels, the lacuno-canalicular system. We report here that S. aureus can infect and reside in human osteocytes without causing cell death both experimentally and in bone samples from patients with PJI. We demonstrate that osteocytes respond to infection by the differential regulation of a large number of genes. S. aureus adapts during intracellular infection of osteocytes by adopting the quasi-dormant small-colony variant (SCV) lifestyle, which might contribute to persistent or silent infection. Our findings shed new light on the etiology of PJI and osteomyelitis in general.Dongqing Yang, Asiri R. Wijenayaka, Lucian B. Solomon, Stephen M. Pederson, David M. Findlay, Stephen P. Kidd, Gerald J. Atkins, Mark S. Smeltzer, Richard P. Novic

    Osteocytes Serve as a Progenitor Cell of Osteosarcoma

    Full text link
    Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO‐Y4, a SV‐40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO‐Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors. J. Cell. Biochem. 115: 1420–1429, 2014. © 2014 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107570/1/jcb24793.pd

    Mechanical reinforcement of electrospun poly(vinyl alcohol) by α‐FeOOH nanowires

    Get PDF
    The authors kindly acknowledge the financial support of the Estonian Research Council for the post-doctoral research grants of personal research funding in projects PUT1096 and PUTJD578 as well as Institutional Research Funding Projects, IUT20-17, and IUT23-7.We report the mechanical performance of α‐FeOOH nanowire reinforced poly(vinyl alcohol) (PVA) composite nanofiber mat, fabricated using straightforward aqueous processing methods. Goethite (α‐FeOOH) nanocrystals have a high elastic modulus and –OH rich surface, ensuring strong interactions with hydrophilic polymers and effective reinforcement. Needle‐less electrospinning resulted in alignment of the nanowires along fibre axis, as confirmed by transmittance electron microscopy studies. Produced composite PVA nanofibers containing 10 wt% goethite nanoparticles exhibited an outstanding fivefold increase in Young's modulus and 2.5‐fold improvement of tensile strength compared to mats of neat PVA. The addition of α‐FeOOH had a significant influence on glass transition temperature indicating formation of interphase regions around nanowire inclusions. Observed properties are explained by nanowire grafting in the precursor solution, extensive interactions between the adsorbed PVA chains and the matrix and percolation of interphase regions at 10 wt% α‐FeOOH.Estonian Research Council PUT1096 and PUTJD578; Institutional Research Funding Projects, IUT20-17, and IUT23-7; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Market Volatility, Digital Transformation and Innovation changed the way of competition

    No full text
    The world is rapidly changing. As a result, organizations have to find new ways to compete with close competitors. It is challenging to use traditional methods and ways. Advertising and price war are not gaining sustainable competitive advantage further. Most past researches mentioned that Innovation is the key to future success. Furthermore, it is required to transform to digitalization. It provides new insight into the organization. Market volatility is a huge challenge to the organization. However, it can be managed with digitalization and Innovation
    corecore