191 research outputs found

    Funktionsambiguitäten und Präferenzregeln bei polyfunktionalen Partikeln

    Get PDF

    Outcrop analogue study to determine reservoir properties of the Los Humeros and Acoculco geothermal fields, Mexico

    Get PDF
    The Los Humeros geothermal system is steam dominated and currently under exploration with 65 wells (23 producing). Having temperatures above 380 ∘C, the system is characterized as a super hot geothermal system (SHGS). The development of such systems is still challenging due to the high temperatures and aggressive reservoir fluids which lead to corrosion and scaling problems. The geothermal system in Acoculco (Puebla, Mexico; so far only explored via two exploration wells) is characterized by temperatures of approximately 300 ∘C at a depth of about 2 km. In both wells no geothermal fluids were found, even though a well-developed fracture network exists. Therefore, it is planned to develop an enhanced geothermal system (EGS). For better reservoir understanding and prospective modeling, extensive geological, geochemical, geophysical and technical investigations are performed within the scope of the GEMex project. Outcrop analogue studies have been carried out in order to identify the main fracture pattern, geometry and distribution of geological units in the area and to characterize all key units from the basement to the cap rock regarding petro- and thermo-physical rock properties and mineralogy. Ongoing investigations aim to identify geological and structural heterogeneities on different scales to enable a more reliable prediction of reservoir properties. Beside geological investigations, physical properties of the reservoir fluids are determined to improve the understanding of the hydrochemical processes in the reservoir and the fluid-rock interactions, which affect the reservoir rock properties

    From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada

    Get PDF
    The Canadian province of Alberta has one of the highest per capita CO2-equivalent emissions in Canada, predominantly due to the industrial burning of coal for the generation of electricity and mining operations in the oil sands deposits. Alberta's geothermal potential could reduce CO2 emissions by substituting at least some fossil fuels with geothermal energy.The Upper Devonian carbonate aquifer systems within the Alberta Basin are promising target formations for geothermal energy. To assess their geothermal reservoir potential, detailed knowledge of the thermophysical and petrophysical rock properties is needed. An analogue study was conducted on two regionally extensive Devonian carbonate aquifers, the Southesk-Cairn Carbonate Complex and the Rimbey-Meadowbrook Reef Trend, to furnish a preliminary assessment of the potential for geothermal utilization. Samples taken from outcrops were used as analogues to equivalent formations in the reservoir and correlated with core samples of the reservoir. Analogue studies enable the determination and correlation of facies-related rock properties to identify sedimentary, diagenetic, and structural variations, allowing for more reliable reservoir property prediction.Rock samples were taken from several outcrops of Upper Devonian carbonates in the Rocky Mountain Front Ranges and from four drill cores from the stratigraphically equivalent Leduc Formation and three drill cores of the slightly younger Nisku Formation in the subsurface of the Alberta Basin. The samples were analyzed for several thermophysical and petrophysical properties, i.e., thermal conductivity, thermal diffusivity, and heat capacity, as well as density, porosity, and permeability. Furthermore, open-file petrophysical core data retrieved from the AccuMap database were used for correlation.The results from both carbonate complexes indicate good reservoir conditions regarding geothermal utilization with an average reservoir porosity of about 8&thinsp;%, average reservoir permeability between 10−12 and 10−15&thinsp;m2, and relatively high thermal conductivities ranging from 3 to 5&thinsp;W m−1 K−1. The most promising target reservoirs for hydrothermal utilisation are the completely dolomitized reef sections. The measured rock properties of the Leduc Formation in the subsurface show no significant differences between the Rimbey-Meadowbrook Reef Trend and the Southesk-Cairn Carbonate Complex. Differences between the dolomitized reef sections of the examined Leduc and Nisku Formation are also minor to insignificant, whereas the deeper basinal facies of the Nisku Formation differs significantly.In contrast, the outcrop analogue samples have lower porosity and permeability, likely caused by low-grade metamorphism and deformation during the Laramide orogeny that formed the Rocky Mountains. As such, the outcrop analogues are not valid proxies for the buried reservoirs in the Alberta Basin.Taken together, all available data suggest that dolomitization enhanced the geothermal properties, but depositional patterns and other diagenetic events, e.g., fracturing, also played an important role.</p

    Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptor-γ co-activator (PGC)-1α is a transcriptional co-activator of antioxidant genes and a master regulator of mitochondrial biogenesis. Parkinson's disease (PD) is associated with oxidative stress and mitochondrial dysfunction and recent work suggests a role for PGC-1α. We hypothesized that the rs8192678 <it>PGC-1α </it>single nucleotide polymorphism (SNP) may influence risk or age of onset of PD. The A10398G mitochondrial SNP has been inversely associated with risk of PD in some studies. In the current study we analyzed whether rs8192678 or other <it>PGC-1α </it>SNPs affect PD risk or age of onset, singularly or in association with the A10398G SNP.</p> <p>Methods</p> <p>Genomic DNA samples from 378 PD patients and 173 age-matched controls were analyzed by multiplexed probe sequencing, followed by statistical analyses of the association of each SNP, alone or in combination, with risk or age of onset of PD. Adjustments were made for age of onset being less than the age of sampling, and for the observed dependence between these two ages. The PD samples were obtained as two separate cohorts, therefore statistical methods accounted for different sampling methods between the two cohorts, and data were analyzed using Cox regression adjusted for sampling in the risk set definition and in the model.</p> <p>Results</p> <p>The rs8192678 PGC-1α SNP was not associated with the risk of PD. However, an association of the <it>PGC-1α </it>rs8192678 GG variant with longevity was seen in control subjects (p = 0.019). Exploratory studies indicated that the CC variant of rs6821591 was associated with risk of early onset PD (p = 0.029), with PD age of onset (p = 0.047), and with longevity (p = 0.022). The rs2970848 GG allele was associated with risk of late onset PD (p = 0.027).</p> <p>Conclusions</p> <p>These data reveal possible associations of the <it>PGC-1α </it>SNPs rs6821591 and rs2970848 with risk or age of onset of PD, and of the <it>PGC-1α </it>rs8192678 GG and the rs6821591 CC variants with longevity. If replicated in other datasets, these findings may have important implications regarding the role of <it>PGC-1α </it>in PD and longevity.</p

    Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase

    Get PDF
    Objective To investigate the role of neuroinflammation in asymptomatic and symptomatic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mutation carriers. Methods The neuroinflammatory markers chitotriosidase 1 (CHIT1), YKL-40 and glial fibrillary acidic protein (GFAP) were measured in cerebrospinal fluid (CSF) and blood samples from asymptomatic and symptomatic ALS/FTD mutation carriers, sporadic cases and controls by ELISA. Results CSF levels of CHIT1, YKL-40 and GFAP were unaffected in asymptomatic mutation carriers (n=16). CHIT1 and YKL-40 were increased in gALS (p<0.001, n=65) whereas GFAP was not affected. Patients with ALS carrying a CHIT1 polymorphism had lower CHIT1 concentrations in CSF (-80%) whereas this polymorphism had no influence on disease severity. In gFTD (n=23), increased YKL-40 and GFAP were observed (p<0.05), whereas CHIT1 was nearly not affected. The same profile as in gALS and gFTD was observed in sALS (n=64/70) and sFTD (n=20/26). CSF and blood concentrations correlated moderately (CHIT1, r=0.51) to weak (YKL-40, r=0.30, GFAP, r=0.39). Blood concentrations of these three markers were not significantly altered in any of the groups except CHIT1 in gALS of the Ulm cohort (p<0.05). Conclusion Our data indicate that neuroinflammation is linked to the symptomatic phase of ALS/FTD and shows a similar pattern in sporadic and genetic cases. ALS and FTD are characterised by a different neuroinflammatory profile, which might be one driver of the diverse presentations of the ALS/FTD syndrome

    Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion

    Get PDF
    Objectives: The hexanucleotide repeat expansion in the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (C9-ALS) and frontotemporal dementia (C9-FTD). Until now, it is unknown which factors define whether C9orf72 mutation carriers develop ALS or FTD. Our aim was to identify protein biomarker candidates in the cerebrospinal fluid (CSF) which differentiate between C9-ALS and C9-FTD and might be indicative for the outcome of the mutation. Methods We compared the CSF proteome of 16 C9-ALS and 8 C9-FTD patients and 11 asymptomatic C9orf72 mutation carriers (CAR) by isobaric tags for relative and absolute quantitation. Eleven biomarker candidates were selected from the pool of differentially regulated proteins for further validation by multiple reaction monitoring and single-molecule array in a larger cohort (n=156). Results In total, 2095 CSF proteins were identified and 236 proteins were significantly different in C9-ALS versus C9-FTD including neurofilament medium polypeptide (NEFM) and chitotriosidase-1 (CHIT1). Eight candidates were successfully validated including significantly increased ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) levels in C9-ALS compared with C9-FTD and controls and decreased neuronal pentraxin receptor (NPTXR) levels in C9-FTD versus CAR. Conclusions: This study presents a deep proteomic CSF analysis of C9-ALS versus C9-FTD patients. As a proof of concept, we observed higher NEFM and CHIT1 CSF levels in C9-ALS. In addition, we also show clear upregulation of UCHL1 in C9-ALS and downregulation of NPTXR in C9-FTD. Significant differences in UCHL1 CSF levels may explain diverging ubiquitination and autophagy processes and NPTXR levels might reflect different synapses organisation processes

    A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS

    Get PDF
    CHCHD10 mutations are linked to amyotrophic lateral sclerosis, but their mode of action is unclear. In a 29-year-old patient with rapid disease progression, we discovered a novel mutation (Q108P) in a conserved residue within the coiled-coil-helix-coiled-coil-helix (CHCH) domain. The aggressive clinical phenotype prompted us to probe its pathogenicity. Unlike the wild-type protein, mitochondrial import of CHCHD10 Q108P was blocked nearly completely resulting in diffuse cytoplasmic localization and reduced stability. Other CHCHD10 variants reported in patients showed impaired mitochondrial import (C122R) or clustering within mitochondria (especially G66V and E127K) often associated with reduced expression. Truncation experiments suggest mitochondrial import of CHCHD10 is mediated by the CHCH domain rather than the proposed N-terminal mitochondrial targeting signal. Knockdown of Mia40, which introduces disulfide bonds into CHCH domain proteins, blocked mitochondrial import of CHCHD10. Overexpression of Mia40 rescued mitochondrial import of CHCHD10 Q108P by enhancing disulfide-bond formation. Since reduction in CHCHD10 inhibits respiration, mutations in its CHCH domain may cause aggressive disease by impairing mitochondrial import. Our data suggest Mia40 upregulation as a potential therapeutic salvage pathway

    Ablation of Proliferating Cells in the CNS Exacerbates Motor Neuron Disease Caused by Mutant Superoxide Dismutase

    Get PDF
    Proliferation of glia and immune cells is a common pathological feature of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here, to investigate the role of proliferating cells in motor neuron disease, SOD1G93A transgenic mice were treated intracerebroventicularly (ICV) with the anti-mitotic drug cytosine arabinoside (Ara-C). ICV delivery of Ara-C accelerated disease progression in SOD1G93A mouse model of ALS. Ara-C treatment caused substantial decreases in the number of microglia, NG2+ progenitors, Olig2+ cells and CD3+ T cells in the lumbar spinal cord of symptomatic SOD1G93A transgenic mice. Exacerbation of disease was also associated with significant alterations in the expression inflammatory molecules IL-1β, IL-6, TGF-β and the growth factor IGF-1

    The Interplay between PolyQ and Protein Context Delays Aggregation by Forming a Reservoir of Protofibrils

    Get PDF
    Polyglutamine (polyQ) diseases are inherited neurodegenerative disorders caused by the expansion of CAG codon repeats, which code for polyQ in the corresponding gene products. These diseases are associated with the presence of amyloid-like protein aggregates, induced by polyQ expansion. It has been suggested that the soluble aggregates rather than the mature fibrillar aggregates are the toxic species, and that the aggregation properties of polyQ can be strongly modulated by the surrounding protein context. To assess the importance of the protein carrier in polyQ aggregation, we have studied the misfolding pathway and the kinetics of aggregation of polyQ of lengths above (Q41) and below (Q22) the pathological threshold fused to the well-characterized protein carrier glutathione S-transferase (GST). This protein, chosen as a model system, is per se able to misfold and aggregate irreversibly, thus mimicking the behaviour of domains of naturally occurring polyQ proteins. We prove that, while it is generally accepted that the aggregation kinetics of polyQ depend on its length and are faster for longer polyQ tracts, the presence of GST alters the polyQ aggregation pathway and reverses this trend. Aggregation occurs through formation of a reservoir of soluble intermediates whose populations and kinetic stabilities increase with polyQ length. Our results provide a new model that explains the toxicity of expanded polyQ proteins, in which the interplay between polyQ regions and other aggregation-prone domains plays a key role in determining the aggregation pathway
    • …
    corecore