4,894 research outputs found

    The role of radiative cooling and leaf wetting in air–leaf water exchange during dew and radiation fog events in a temperate grassland

    Get PDF
    During prolonged dry periods, non-rainfall water (NRW) plays a vital role as water input into temperate grasslands, affecting the leaf surface water balance and plant water status. Previous chamber and laboratory experiments investigated air–leaf water exchange during dew deposition, but overlooked the importance of radiative cooling on air–leaf water exchange because the chamber is a heat trap, preventing radiative cooling. To complement these previous studies, we conducted a field study, in which we investigated the effect of radiatively-induced NRW inputs on leaf water isotope signals and air–leaf water exchange in a temperate grassland during the dry-hot summers of 2018 and 2019. We carried out field measurements of the isotope composition of atmospheric water vapor, NRW droplets on foliage, leaf water, xylem water of root crown, and soil water, combined with meteorological and plant physiological measurements. We combined radiation measurements with thermal imaging to estimate leaf temperatures using different methods, and computed the corresponding leaf conductance and air–leaf water exchange. Our results indicate that radiative cooling and leaf wetting induced a switch of direction in the net water vapor exchange from leaf-to-air to air-to-leaf. The leaf conductance and air–leaf water exchange varied by species due to the species-specific biophysical controls. Our results highlight the ecological relevance of radiative cooling and leaf wetting in natural temperate grasslands, a process which is expected to influence land surface water budgets and may impact plant survival in many regions in a drier climate

    Earth-like Habitats in Planetary Systems

    Full text link
    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. But habitability of inner rocky planets may be supported in those planetary systems hosting giant planets. Gravitational interactions within a complex multiple-body structure including giant planets may supply terrestrial planets with materials which formed in the colder region of the proto-planetary disk. During these processes, water, the prime requisite for habitability, is delivered to the inner system. This may occur either during the main accretion phase of terrestrial planets or via impacts during a post-accretion bombardment. Results for both processes are summarized and discussed with reference to the lunar crater record. Starting from a scenario involving migration of the giant planets this contribution discusses the delivery of water to Earth, the modification of atmospheres by impacts in a planetary system context and the likelihood of the existence of extrasolar Earth-like habitable worlds.Comment: 36 Pages, 6 figures, 2014, Special Issue in Planetary and Space Science on the Helmholtz Research Alliance on Planetary Evolution and Lif

    The local content of all pure two-qubit states

    Get PDF
    The (non-)local content in the sense of Elitzur, Popescu, and Rohrlich (EPR2) [Phys. Lett. A 162, 25 (1992)] is a natural measure for the (non-)locality of quantum states. Its computation is in general difficult, even in low dimensions, and is one of the few open questions about pure two-qubit states. We present a complete solution to this long-lasting problem.Comment: 9 pages, 3 figure

    Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants

    Get PDF
    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO(2). The carbon isotopic composition of leaf dark-respired CO(2) (i.e. δ (13) C (R)) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO(2) are not fully understood, since daily changes in δ(13)C of putative leaf respiratory carbon sources (δ (13) C (RS)) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ (13) C (R) with an in-tube incubation technique and δ (13) C (RS) with compound-specific isotope analysis during a daily cycle. The highest δ (13) C (RS) values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ (13) C (R) (up to 5.2‰) and compared to δ (13) C (RS) of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ (13) C (R) and δ (13) C (RS) among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P≤0.001) and nighttime (r(2)=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ (13) C (RS) of malate as the most important carbon source influencing δ (13) C (R). Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO(2) in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle

    Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts

    Get PDF
    [EN] Ruthenium MOF [Ru-3(BTC)(2)Y-y] . G(g) (BTC=benzene-1,3,5-tricarboxylate; Y=counter ions=Cl-, OH-, OAc-; G=guest molecules=HOAc, H2O) is modified via a mixed-linker approach, using mixtures of BTC and pyridine-3,5-dicarboxylate (PYDC) linkers, triggering structural defects at the distinct Ru-2 paddlewheel (PW) nodes. This defect-engineering leads to enhanced catalytic properties due to the formation of partially reduced Ru-2-nodes. Application of a hydrogen pre-treatment protocol to the Ru-MOFs, leads to a further boost in catalytic activity. We study the benefits of (1) defect engineering and (2) hydrogen pre-treatment on the catalytic activity of Ru-MOFs in the Meerwein-Ponndorf-Verley reaction and the isomerization of allylic alcohols to saturated ketones. Simple solvent washing could not avoid catalyst deactivation during recycling for the latter reaction, while hydrogen treatment prior to each catalytic run proved to facilitate materials recyclability with constant activity over five runs.Funding by the Spanish Government is acknowledged through projects MAT2017-82288-C2-1-P and Severo Ochoa (SEV-2016-0683). This project is further funded by the Deutsche Forschungsgemeinschaft grant no. FI-502/32-1 ("DEMOFs"). KE and WRH would like to thank TUM Graduate School and the Gesellschaft Deutscher Chemiker (GDCh) for financial support. KE gratefully acknowledges support from the colleagues Olesia Halbherr (nee Kozachuk) and Wenhua Zhang.Epp, K.; Luz, I.; Heinz, WR.; Rapeyko, A.; Llabrés I Xamena, FX.; Fischer, RA. (2020). Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts. ChemCatChem. 12(6):1720-1725. https://doi.org/10.1002/cctc.201902079S17201725126Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kHasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374yWang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258pVermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078uZheng, J., Ye, J., Ortuño, M. A., Fulton, J. L., Gutiérrez, O. Y., Camaioni, D. M., … Lercher, J. A. (2019). Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 141(23), 9292-9304. doi:10.1021/jacs.9b02902Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033bFarrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063Valvekens, P., Vermoortele, F., & De Vos, D. (2013). Metal–organic frameworks as catalysts: the role of metal active sites. Catalysis Science & Technology, 3(6), 1435. doi:10.1039/c3cy20813cDoonan, C. J., & Sumby, C. J. (2017). Metal–organic framework catalysis. CrystEngComm, 19(29), 4044-4048. doi:10.1039/c7ce90106bDhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256hWang, Y., & Wöll, C. (2018). Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 148(8), 2201-2222. doi:10.1007/s10562-018-2432-2Genna, D. T., Pfund, L. Y., Samblanet, D. C., Wong-Foy, A. G., Matzger, A. J., & Sanford, M. S. (2016). Rhodium Hydrogenation Catalysts Supported in Metal Organic Frameworks: Influence of the Framework on Catalytic Activity and Selectivity. ACS Catalysis, 6(6), 3569-3574. doi:10.1021/acscatal.6b00404Chen, H., He, Y., Pfefferle, L. D., Pu, W., Wu, Y., & Qi, S. (2018). Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal-Organic Frameworks in the Aqueous Phase. ChemCatChem, 10(12), 2558-2570. doi:10.1002/cctc.201800211Marx, S., Kleist, W., Huang, J., Maciejewski, M., & Baiker, A. (2010). Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). Dalton Transactions, 39(16), 3795. doi:10.1039/c002483jFang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254. doi:10.1002/anie.201411540Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G., & Fischer, R. A. (2018). Defective Metal-Organic Frameworks. Advanced Materials, 30(37), 1704501. doi:10.1002/adma.201704501Zhang, Y.-B., Furukawa, H., Ko, N., Nie, W., Park, H. J., Okajima, S., … Yaghi, O. M. (2015). Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. Journal of the American Chemical Society, 137(7), 2641-2650. doi:10.1021/ja512311aDrache, F., Cirujano, F. G., Nguyen, K. D., Bon, V., Senkovska, I., Llabrés i Xamena, F. X., & Kaskel, S. (2018). Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal–Organic Framework DUT-67. Crystal Growth & Design, 18(9), 5492-5500. doi:10.1021/acs.cgd.8b00832Zhang, W., Kauer, M., Halbherr, O., Epp, K., Guo, P., Gonzalez, M. I., … Fischer, R. A. (2016). Ruthenium Metal-Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties. Chemistry - A European Journal, 22(40), 14297-14307. doi:10.1002/chem.201602641Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal–organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509. doi:10.1039/c1cc11107hKozachuk, O., Luz, I., Llabrés i Xamena, F. X., Noei, H., Kauer, M., Albada, H. B., … Fischer, R. A. (2014). Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie International Edition, 53(27), 7058-7062. doi:10.1002/anie.201311128Agirrezabal-Telleria, I., Luz, I., Ortuño, M. A., Oregui-Bengoechea, M., Gandarias, I., López, N., … Soukri, M. (2019). Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts. Nature Communications, 10(1). doi:10.1038/s41467-019-10013-6Zhang, W., Kozachuk, O., Medishetty, R., Schneemann, A., Wagner, R., Khaletskaya, K., … Fischer, R. A. (2015). Controlled SBU Approaches to Isoreticular Metal-Organic Framework Ruthenium-Analogues of HKUST-1. European Journal of Inorganic Chemistry, 2015(23), 3913-3920. doi:10.1002/ejic.201500478Heinz, W. R., Kratky, T., Drees, M., Wimmer, A., Tomanec, O., Günther, S., … Fischer, R. A. (2019). Mixed precious-group metal–organic frameworks: a case study of the HKUST-1 analogue [RuxRh3−x(BTC)2]. Dalton Transactions, 48(32), 12031-12039. doi:10.1039/c9dt01198fBäckvall, J.-E. (2002). Transition metal hydrides as active intermediates in hydrogen transfer reactions. Journal of Organometallic Chemistry, 652(1-2), 105-111. doi:10.1016/s0022-328x(02)01316-5Chowdhury, R. L., & Bäckvall, J.-E. (1991). Efficient ruthenium-catalysed transfer hydrogenation of ketones by propan-2-ol. J. Chem. Soc., Chem. Commun., 0(16), 1063-1064. doi:10.1039/c39910001063Ahlsten, N., Bartoszewicz, A., & Martín-Matute, B. (2012). Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes. Dalton Transactions, 41(6), 1660. doi:10.1039/c1dt11678aAhlsten, N., Lundberg, H., & Martín-Matute, B. (2010). Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature. Green Chemistry, 12(9), 1628. doi:10.1039/c004964fCahard, D., Gaillard, S., & Renaud, J.-L. (2015). Asymmetric isomerization of allylic alcohols. Tetrahedron Letters, 56(45), 6159-6169. doi:10.1016/j.tetlet.2015.09.098Xia, T., Wei, Z., Spiegelberg, B., Jiao, H., Hinze, S., & de Vries, J. G. (2018). Isomerization of Allylic Alcohols to Ketones Catalyzed by Well-Defined Iron PNP Pincer Catalysts. Chemistry - A European Journal, 24(16), 4043-4049. doi:10.1002/chem.201705454Scalambra, F., Lorenzo-Luis, P., de los Rios, I., & Romerosa, A. (2019). Isomerization of allylic alcohols in water catalyzed by transition metal complexes. Coordination Chemistry Reviews, 393, 118-148. doi:10.1016/j.ccr.2019.04.012Yamaguchi, K., Koike, T., Kotani, M., Matsushita, M., Shinachi, S., & Mizuno, N. (2005). Synthetic Scope and Mechanistic Studies of Ru(OH)x/Al2O3-Catalyzed Heterogeneous Hydrogen-Transfer Reactions. Chemistry - A European Journal, 11(22), 6574-6582. doi:10.1002/chem.200500539Mitchell, R. W., Spencer, A., & Wilkinson, G. (1973). Carboxylato-triphenylphosphine complexes of ruthenium, cationic triphenylphosphine complexes derived from them, and their behaviour as homogeneous hydrogenation catalysts for alkenes. Journal of the Chemical Society, Dalton Transactions, (8), 846. doi:10.1039/dt973000084

    Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants

    Get PDF
    Carbon isotope analyses revealed malate as a key carbon source of leaf dark-respired CO2 in potato plants under different temperature and soil moisture conditions during a daily cycl

    The cratering record of Ganymede and the origin of potential impactors: open issues

    Get PDF
    The origin of impactors on the Galilean satellites of Jupiter is an open question. In this study we present results from a mapping campaign based on reprocessed Voyager and Galileo SSI images in order to derive a thourough data base of Ganymede's crater distributions

    VISTA in Soft Tissue Sarcomas: A Perspective for Immunotherapy?

    Get PDF
    Simple Summary V domain immunoglobulin suppressor of T cell activation (VISTA) has recently been described as a protein expressed on immune cells and tumour cells and a possible target for immunotherapy. We show for the first time that VISTA is broadly expressed across subtypes of soft tissue sarcoma. We found VISTA related to other immunopathological parameters such as tumour-infiltrating lymphocytes and observed improved survival in patients with non-T-cell-inflamed tumours expressing VISTA. Our research supports the notion of VISTA as a potential target for immunotherapy in soft tissue sarcoma. Abstract (1) Background: V domain immunoglobulin suppressor of T cell activation (VISTA) plays a critical role in antitumor immunity and may be a valuable target in cancer immunotherapy. To date, it has never been studied in a large and well-characterised cohort of soft tissue sarcomas (STS). (2) Methods: Using immunohistochemistry, we examined VISTA expression in tumour tissues of 213 high-risk STS. We then analysed whether VISTA was associated with other clinicopathological parameters, including tumour-infiltrating lymphocyte (TIL) counts, programmed death receptor-1 (PD1), programmed death ligand-1 (PDL1), CD3, grading, and long-term survival. (3) Results: We observed VISTA expression in 96 (45%) of 213 specimens with distinct patterns ranging from 26 to 63% for histological subtypes. VISTA was associated with higher grade (G3 vs. G2, p = 0.019), higher TIL counts ( p = 0.033), expression of PD1 ( p = 0.046), PDL1 ( p = 0.031), and CD3+ ( p = 0.023). In patients without CD3 + TILs, 10-year survival was higher when VISTA was expressed compared to when there was no VISTA expression ( p = 0.013). In a multivariate analysis, VISTA expression was independently associated with prolonged survival ( p = 0.043). (4) Conclusions: VISTA is expressed in different STS subtypes and is associated with increased TILs, PD-1, PD-L1, and CD3 expression. Patients with VISTA + tumours show improved survival. These results may help define future immunotherapeutic approaches in STS

    Charged particle production in the Pb+Pb system at 158 GeV/c per nucleon

    Get PDF
    Charged particle multiplicities from high multiplicity central interactions of 158 GeV/nucleon Pb ions with Pb target nuclei have been measured in the central and far forward projectile spectator regions using emulsion chambers. Multiplicities are significantly lower than predicted by Monte Carlo simulations. We examine the shape of the pseudorapidity distribution and its dependence on centrality in detail.Comment: 17 pages text plus 12 figures in postscript 12/23/99 -- Add TeX version of sourc
    • …
    corecore