256 research outputs found
Manganese mineralogy and diagenesis in the sedimentary rock record
Oxidation of manganese(II) to manganese(III,IV) demands oxidants with very high redox potentials; consequently, manganese oxides are both excellent proxies for molecular oxygen and highly favorable electron acceptors when oxygen is absent. The first of these features results in manganese-enriched sedimentary rocks (manganese deposits, commonly Mn ore deposits), which generally correspond to the availability of molecular oxygen in Earth surface environments. And yet because manganese reduction is promoted by a variety of chemical species, these ancient manganese deposits are often significantly more reduced than modern environmental manganese-rich sediments. We document the impacts of manganese reduction and the mineral phases that form stable manganese deposits from seven sedimentary examples spanning from modern surface environments to rocks over 2 billion years old. Integrating redox and coordination information from synchrotron X-ray absorption spectroscopy and X-ray microprobe imaging with scanning electron microscopy and energy and wavelength-dispersive spectroscopy, we find that unlike the Mn(IV)-dominated modern manganese deposits, three manganese minerals dominate these representative ancient deposits: kutnohorite (CaMn(CO_3)_2), rhodochrosite (MnCO_3), and braunite (Mn(III)_6Mn(II)O_8SiO_4). Pairing these mineral and textural observations with previous studies of manganese geochemistry, we develop a paragenetic model of post-depositional manganese mineralization with kutnohorite and calcian rhodochrosite as the earliest diagenetic mineral phases, rhodochrosite and braunite forming secondarily, and later alteration forming Mn-silicates
Reply to Jones and Crowe: Correcting mistaken views of sedimentary geology, Mn-oxidation rates, and molecular clocks
Jones and Crowe (1) raise issues already addressed in our article (2) based on an inaccurate grasp of the literature and several logical misconceptions. The authors suggest that inputs we chose in our kinetic calculations are unsuitable because we used values only from the Black Sea. As described, we made an extremely conservative estimate because the Black Sea is the most rapid Mn-oxidizing environment in the literature. Other locations have oxidation rates orders-of-magnitude lower (3). Jones and Crowe also propose sedimentation rates in our Mn-oxidation calculations were too high, citing a reference for incorrect rocks: different lithologies, environments, process sedimentology, geodynamic setting, and age
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
High non-photonic electron production in + collisions at = 200 GeV
We present the measurement of non-photonic electron production at high
transverse momentum ( 2.5 GeV/) in + collisions at
= 200 GeV using data recorded during 2005 and 2008 by the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The measured
cross-sections from the two runs are consistent with each other despite a large
difference in photonic background levels due to different detector
configurations. We compare the measured non-photonic electron cross-sections
with previously published RHIC data and pQCD calculations. Using the relative
contributions of B and D mesons to non-photonic electrons, we determine the
integrated cross sections of electrons () at 3 GeV/10 GeV/ from bottom and charm meson decays to be = 4.0({\rm
stat.})({\rm syst.}) nb and =
6.2({\rm stat.})({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at GeV
We present first measurements of the evolution of the differential transverse
momentum correlation function, {\it C}, with collision centrality in Au+Au
interactions at GeV. {\it C} exhibits a strong dependence
on collision centrality that is qualitatively similar to that of number
correlations previously reported. We use the observed longitudinal broadening
of the near-side peak of {\it C} with increasing centrality to estimate the
ratio of the shear viscosity to entropy density, , of the matter formed
in central Au+Au interactions. We obtain an upper limit estimate of
that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at GeV
Dihadron azimuthal correlations containing a high transverse momentum (\pt)
trigger particle are sensitive to the properties of the nuclear medium created
at RHIC through the strong interactions occurring between the traversing parton
and the medium, i.e. jet-quenching. Previous measurements revealed a strong
modification to dihadron azimuthal correlations in Au+Au collisions with
respect to \pp\ and \dAu\ collisions. The modification increases with the
collision centrality, suggesting a path-length dependence to the jet-quenching
effect. This paper reports STAR measurements of dihadron azimuthal correlations
in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of
the trigger particle's azimuthal angle relative to the event plane,
\phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of
both the trigger and associated particle \pt. The subtractions of the
combinatorial background and anisotropic flow, assuming Zero Yield At Minimum
(\zyam), are described. The away-side correlation is strongly modified, and the
modification varies with \phis, which is expected to be related to the
path-length that the away-side parton traverses. The pseudo-rapidity (\deta)
dependence of the near-side correlation, sensitive to long range \deta
correlations (the ridge), is also investigated. The ridge and jet-like
components of the near-side correlation are studied as a function of \phis.
The ridge appears to drop with increasing \phis while the jet-like component
remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table
System size and energy dependence of near-side di-hadron correlations
Two-particle azimuthal () and pseudorapidity ()
correlations using a trigger particle with large transverse momentum () in
+Au, Cu+Cu and Au+Au collisions at =\xspace 62.4 GeV and
200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is
separated into a jet-like component, narrow in both and
, and the ridge, narrow in but broad in .
Both components are studied as a function of collision centrality, and the
jet-like correlation is studied as a function of the trigger and associated
. The behavior of the jet-like component is remarkably consistent for
different collision systems, suggesting it is produced by fragmentation. The
width of the jet-like correlation is found to increase with the system size.
The ridge, previously observed in Au+Au collisions at = 200
GeV, is also found in Cu+Cu collisions and in collisions at
=\xspace 62.4 GeV, but is found to be substantially smaller at
=\xspace 62.4 GeV than at = 200 GeV for the
same average number of participants ().
Measurements of the ridge are compared to models.Comment: 17 pages, 14 figures, submitted to Phys. Rev.
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
- …