9 research outputs found

    A Fast and Effective Local Search Algorithm for Optimizing the Placement of Wind Turbines

    Get PDF
    The placement of wind turbines on a given area of land such that the wind farm produces a maximum amount of energy is a challenging optimization problem. In this article, we tackle this problem, taking into account wake effects that are produced by the different turbines on the wind farm. We significantly improve upon existing results for the minimization of wake effects by developing a new problem-specific local search algorithm. One key step in the speed-up of our algorithm is the reduction in computation time needed to assess a given wind farm layout compared to previous approaches. Our new method allows the optimization of large real-world scenarios within a single night on a standard computer, whereas weeks on specialized computing servers were required for previous approaches.Comment: 16 pages, 2 algorithms, 4 figures, 1 tabl

    Waiter Robots Conveying Drinks

    No full text

    Alterations on cellular redox states upon infection and implications for host cell homeostasis

    No full text
    The cofactors nicotinamide adenine dinucleotide (NAD+) and its phosphate form, NADP+, are crucial molecules present in all living cells. The delicate balance between the oxidized and reduced forms of these molecules is tightly regulated by intracellular metabolism assuring the maintenance of homeostatic conditions, which are essential for cell survival and proliferation. A recent cluster of data has highlighted the importance of the intracellular NAD+/NADH and NADP+/NADPH ratios during host-pathogen interactions, as fluctuations in the levels of these cofactors and in precursors' bioavailability may condition host response and, therefore, pathogen persistence or elimination. Furthermore, an increasing interest has been given towards how pathogens are capable of hijacking host cell proteins in their own advantage and, consequently, alter cellular redox states and immune function. Here, we review the basic principles behind biosynthesis and subcellular compartmentalization of NAD+ and NADP+, as well as the importance of these cofactors during infection, with a special emphasis on pathogen-driven modulation of host NAD+/NADP+ levels and contribution to the associated immune response.(undefined)info:eu-repo/semantics/publishedVersio

    Dendritic cell migration in health and disease

    No full text
    corecore