63 research outputs found

    Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax

    Get PDF
    Plasmodium vivax poses unique challenges for malaria control and elimination, notably the potential for relapses to maintain transmission in the face of drug-based treatment and vector control strategies. We developed an individual-based mathematical model of P. vivax transmission calibrated to epidemiological data from Papua New Guinea (PNG). In many settings in PNG, increasing bed net coverage is predicted to reduce transmission to less than 0.1% prevalence by light microscopy, however there is substantial risk of rebounds in transmission if interventions are removed prematurely. In several high transmission settings, model simulations predict that combinations of existing interventions are not sufficient to interrupt P. vivax transmission. This analysis highlights the potential options for the future of P. vivax control: maintaining existing public health gains by keeping transmission suppressed through indefinite distribution of interventions; or continued development of strategies based on existing and new interventions to push for further reduction and towards elimination

    The complex relationship of exposure to new Plasmodium infections and incidence of clinical malaria in Papua New Guinea

    Get PDF
    The molecular force of blood-stage infection (molFOB) is a quantitative surrogate metric for malaria transmission at population level and for exposure at individual level. Relationships between molFOB, parasite prevalence and clinical incidence were assessed in a treatment-to-reinfection cohort, where P.vivax (Pv) hypnozoites were eliminated in half the children by primaquine (PQ). Discounting relapses, children acquired equal numbers of new P. falciparum (Pf) and Pv blood-stage infections/year (Pf-molFOB = 0-18, Pv-molFOB = 0-23) resulting in comparable spatial and temporal patterns in incidence and prevalence of infections. Including relapses, Pv-molFOB increased >3 fold (relative to PQ-treated children) showing greater heterogeneity at individual (Pv-molFOB = 0-36) and village levels. Pf- and Pv-molFOB were strongly associated with clinical episode risk. Yearly Pf clinical incidence rate (IR = 0.28) was higher than for Pv (IR = 0.12) despite lower Pf-molFOB. These relationships between molFOB, clinical incidence and parasite prevalence reveal a comparable decline in Pf and Pv transmission that is normally hidden by the high burden of Pv relapses. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT02143934

    Cervicovaginal Microbiota Predicts Neisseria gonorrhoeae Clinical Presentation

    Get PDF
    Neisseria gonorrhoeae infection of the female lower genital tract can present with a spectrum of phenotypes ranging from asymptomatic carriage to symptomatic cervical inflammation, or cervicitis. The factors that contribute to the development of asymptomatic or symptomatic infections are largely uncharacterized. We conducted a pilot study to assess differences in the cervicovaginal microbial community of patients presenting with symptomatic vs. asymptomatic N. gonorrhoeae infections to a sexually transmitted infections (STI) clinic. DNA was isolated from cervicovaginal swab specimens from women who tested positive for N. gonorrhoeae infection using a clinical diagnostic nucleic acid amplification test. We performed deep sequencing of 16S ribosomal RNA gene amplicons, followed by microbiome analyses with QIIME, and species-specific real-time PCR to assess the composition of microbial communities cohabitating the lower genital tract with the infecting N. gonorrhoeae. Specimens collected from asymptomatic individuals with N. gonorrhoeae infection and no co-infection with Chlamydia trachomatis and/or Trichomonas vaginalis carried Lactobacillus-dominant microbial communities more frequently than symptomatic patients without co-infection. When compared to asymptomatic individuals, symptomatic women had microbial communities characterized by more diverse and heterogenous bacterial taxa, typically associated with bacterial vaginosis (BV) [Prevotella, Sneathia, Mycoplasma hominis, and Bacterial Vaginosis-Associated Bacterium-1 (BVAB1)/“Candidatus Lachnocurva vaginae”]. Both symptomatic and asymptomatic N. gonorrhoeae patients with additional STI co-infection displayed a BV-like microbial community. These findings suggest that Lactobacillus-dominant vaginal microbial community may protect individuals from developing symptoms during lower genital tract infection with N. gonorrhoeae

    Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model

    Get PDF
    The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovale malarias presents a major challenge for malaria control and elimination in endemic countries. This study aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale infection, illness, and transmission in Papua New Guinean children.; From 17 August 2009 to 20 May 2010, 524 children aged 5-10 y from East Sepik Province in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3 d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only (CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and investigators were blinded to the treatment allocation. Twenty children were excluded during the treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary and secondary outcome measures were time to first P. vivax infection (by qPCR), time to first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infection (by PCR). A basic stochastic transmission model was developed to estimate the potential effect of mass drug administration (MDA) for the prevention of recurrent P. vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up (P. vivax: PQ arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06 versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the molecular force of P. vivax blood-stage infection in the first 3 mo of follow-up (PQ arm 1.90/y versus PL arm 7.75/y, incidence rate ratio [IRR] = 0.21 [95% CI 0.15, 0.28], p < 0.001). Children who received PQ were less likely to carry P. vivax gametocytes (IRR = 0.27 [95% CI 0.19, 0.38], p < 0.001). PQ had a comparable effect irrespective of the presence of P. vivax blood-stage infection at the time of treatment (p = 0.14). Modelling revealed that mass screening and treatment with highly sensitive quantitative real-time PCR, or MDA with blood-stage treatment alone, would have only a transient effect on P. vivax transmission levels, while MDA that includes liver-stage treatment is predicted to be a highly effective strategy for P. vivax elimination. The inclusion of a directly observed 20-d treatment regime maximises the efficiency of hypnozoite clearance but limits the generalisability of results to real-world MDA programmes.; These results suggest that relapses cause approximately four of every five P. vivax infections and at least three of every five P. ovale infections in PNG children and are important in sustaining transmission. MDA campaigns combining blood- and liver-stage treatment are predicted to be a highly efficacious intervention for reducing P. vivax and P. ovale transmission.; ClinicalTrials.gov NCT02143934

    Molecular epidemiology of residual Plasmodium vivax transmission in a paediatric cohort in Solomon Islands

    Get PDF
    Background: Following the scale-up of intervention efforts, malaria burden has decreased dramatically in Solomon Islands (SI). Submicroscopic and asymptomatic Plasmodium vivax infections are now the major challenge for malaria elimination in this country. Since children have higher risk of contracting malaria, this study investigated the dynamics of Plasmodium spp. infections among children including the associated risk factors of residual P. vivax burden. Methods: An observational cohort study was conducted among 860 children aged 0.5–12 years in Ngella (Central Islands Province, SI). Children were monitored by active and passive surveillances for Plasmodium spp. infections and illness. Parasites were detected by quantitative real-time PCR (qPCR) and genotyped. Comprehensive statistical analyses of P. vivax infection prevalence, molecular force of blood stage infection (molFOB) and infection density were conducted. Results: Plasmodium vivax infections were common (overall prevalence: 11.9%), whereas Plasmodium falciparum infections were rare (0.3%) but persistent. Although children acquire an average of 1.1 genetically distinct P. vivax blood-stage infections per year, there was significant geographic heterogeneity in the risks of P. vivax infections across Ngella (prevalence: 1.2–47.4%, p < 0.01; molFOB: 0.05–4.6/year, p < 0.01). Malaria incidence was low (IR: 0.05 episodes/year-at-risk). Age and measures of high exposure were the key risk factors for P. vivax infections and disease. Malaria incidence and infection density decreased with age, indicating significant acquisition of immunity. G6PD deficient children (10.8%) that did not receive primaquine treatment had a significantly higher prevalence (aOR: 1.77, p = 0.01) and increased risk of acquiring new bloodstage infections (molFOB aIRR: 1.51, p = 0.03), underscoring the importance of anti-relapse treatment. Conclusion: Residual malaria transmission in Ngella exhibits strong heterogeneity and is characterized by a high proportion of submicroscopic and asymptomatic P. vivax infections, alongside sporadic P. falciparum infections. Implementing an appropriate primaquine treatment policy to prevent P. vivax relapses and specific targeting of control interventions to high risk areas will be required to accelerate ongoing control and elimination activities

    Reuse of malaria rapid diagnostic tests for amplicon deep sequencing to estimate Plasmodium falciparum transmission intensity in western Uganda

    Get PDF
    Molecular techniques are not routinely employed for malaria surveillance, while cross-sectional, community-based parasite surveys require significant resources. Here, we describe a novel use of malaria rapid diagnostic tests (RDTs) collected at a single facility as source material for sequencing to esimtate malaria transmission intensity across a relatively large catchment area. We extracted Plasmodium falciparum DNA from RDTs, then amplified and sequenced a region of the apical membrane antigen 1 (pfama1) using targeted amplicon deep sequencing. We determined the multiplicity of infection (MOI) for each sample and examined associations with demographic, clinical, and spatial factors. We successfully genotyped 223 of 287 (77.7%) of the samples. We demonstrated an inverse relationship between the MOI and elevation with individuals presenting from the highest elevation villages harboring infections approximately half as complex as those from the lowest (MOI 1.85 vs. 3.51, AOR 0.25, 95% CI 0.09-0.65, p = 0.004). This study demonstrates the feasibility and validity of using routinely-collected RDTs for molecular surveillance of malaria and has real-world utility, especially as the cost of high-throughpout sequencing continues to decline

    Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria

    Get PDF
    Background: Gametocytes are the transmission stages of Plasmodium parasites, the causative agents of malaria. As their density in the human host is typically low, they are often undetected by conventional light microscopy. Furthermore, application of RNA-based molecular detection methods for gametocyte detection remains challenging in remote field settings. In the present study, a detailed comparison of three methods, namely light microscopy, magnetic fractionation and reverse transcriptase polymerase chain reaction for detection of Plasmodium falciparum and Plasmodium vivax gametocytes was conducted.Methods. Peripheral blood samples from 70 children aged 0.5 to five years with uncomplicated malaria who were treated with either artemether-lumefantrine or artemisinin-naphthoquine were collected from two health facilities on the north coast of Papua New Guinea. The samples were taken prior to treatment (day 0) and at pre-specified intervals during follow-up. Gametocytes were measured in each sample by three methods: i) light microscopy (LM), ii) quantitative magnetic fractionation (MF) and, iii) reverse transcriptase PCR (RTPCR). Data were analysed using censored linear regression and Bland and Altman techniques.Results: MF and RTPCR were similarly sensitive and specific, and both were superior to LM. Overall, there were approximately 20% gametocyte-positive samples by LM, whereas gametocyte positivity by MF and RTPCR were both more than two-fold this level. In the subset of samples collected prior to treatment, 29% of children were positive by LM, and 85% were gametocyte positive by MF and RTPCR, respectively.Conclusions: The present study represents the first direct comparison of standard LM, MF and RTPCR for gametocyte detection in field isolates. It provides strong evidence that MF is superior to LM and can be used to detect gametocytaemic patients under field conditions with similar sensitivity and specificity as RTPCR

    Atovaquone-Proguanil in Combination with Artesunate to Treat Multidrug-Resistant P. falciparum Malaria in Cambodia: An Open-Label Randomized Trial

    Get PDF
    Background: Recent artemisinin-combination therapy failures in Cambodia prompted a search for alternatives. Atovaquone-proguanil (AP), a safe, effective treatment for multidrug-resistant Plasmodium falciparum (P.f.), previously demonstrated additive effects in combination with artesunate (AS). Methods: Patients with P.f. or mixed-species infection (n = 205) in Anlong Veng (AV; n = 157) and Kratie (KT; n = 48), Cambodia, were randomized open-label 1:1 to a fixed-dose 3-day AP regimen +/-3 days of co-administered artesunate (ASAP). Single low-dose primaquine (PQ, 15 mg) was given on day 1 to prevent gametocyte-mediated transmission. Results: Polymerase chain reaction-adjusted adequate clinical and parasitological response at 42 days was 90% for AP (95% confidence interval [CI], 82%-95%) and 92% for ASAP (95% CI, 83%-96%; P =. 73). The median parasite clearance time was 72 hours for ASAP in AV vs 56 hours in KT (P <. 001) and was no different than AP alone. At 1 week postprimaquine, 7% of the ASAP group carried microscopic gametocytes vs 29% for AP alone (P =. 0001). Nearly all P.f. isolates had C580Y K13 propeller artemisinin resistance mutations (AV 99%; KT 88%). Only 1 of 14 treatment failures carried the cytochrome bc1 (Pfcytb) atovaquone resistance mutation, which was not present at baseline. P.f. isolates remained atovaquone sensitive in vitro but cycloguanil resistant, with a triple P.f. dihydrofolate reductase mutation. Conclusions: Atovaquone-proguanil remained marginally effective in Cambodia (≥90%) with minimal Pfcytb mutations observed. Treatment failures in the presence of ex vivo atovaquone sensitivity and adequate plasma levels may be attributable to cycloguanil and/or artemisinin resistance. Artesunate co-administration provided little additional blood-stage efficacy but reduced post-treatment gametocyte carriage in combination with AP beyond single low-dose primaquine

    The molecular epidemiology of malaria in Solomon Islands

    No full text
    © 2016 Dr. Andreea WaltmannHistorically, Solomon Islands in the Southwest Pacific has endured considerable P. falciparum and P. vivax burden. In the last 20 years, it has achieved 90% reduction in malaria cases through sustained, intensified malaria interventions (long lasting insecticide nets, indoor residual sprays and artemisinin-combination therapy) and is aiming for elimination by 2030. In 2012 and 2013, we conducted two cross-sectional surveys (study 1, all age, n=3501; study 2, age 0.5-12 years, n=1078) in Ngella, an area of low to moderate transmission. We aimed to investigate the natural reservoir and local epidemiology of P. vivax and P. falciparum. The contrast was striking. In the 2012 survey, only five clonal P. falciparum infections were identified from a single village and had the same msp2 genotpye. P. vivax prevalence was found to be moderately high (PCR, 13.4%), with predominantly afebrile, submicroscopic infections. The P. vivax infections displayed high genetic complexity (by genotyping with msp1F3 and MS16) and considerable spatial heterogeneity among and within different Ngella regions, and even at sub-village level with some households disproportionately harboring more infected co-inhabitants than others. In the 2013 study, a further seven P. falciparum infections were found in multiple locations, indicating that transmission of this species is continuing but at very low levels and infections are predominantly asymptomatic. To investigate the transmission scenario of the two species in more detail, we undertook population genetics analyses. We typed the five 2012 P. falciparum infections at 10 polymorphic microsatellite loci and 323 P. vivax infections at nine microsatellite loci. The five P. falciparum infections also clonal by this panel of 10 markers. Subsequent analyses of diversity (FST, GST, Jost’s D) and structure (Bayesian clustering) for P. vivax, revealed a genetically diverse population, but spatially fragmented, even among villages 6-15km apart. This indicates that whilst P. vivax may be more difficult to eliminate than P. falciparum, local parasite populations of both species have been affected by control interventions. A noteworthy epidemiological result from the 2012 survey was that living in a household with at least one other P. vivax carrier increased the risk of P. vivax infection, suggesting possible intra-household transmission. Subsequent analysis of genetic relatedness of P. vivax infections within households vs. among households indicated supported this hypothesis. Isolates from the same household were more genetically related than isolates from different households, and a high level of genetic kinship was retained among households located up to 100 meters of each other. Associations of P. vivax infection with human genetic factors known to confer protection against infection (α-thalassemia and Southeast Asian ovalocytosis, SAO) have been investigated in a second cross-sectional study conducted in 2013 in children aged 6 months to 12 years of age. SAO was not found in Ngella, whereas approximately a third of 1078 subjects were found to harbor the α-thalassemia alleles. The findings presented in this thesis will be discussed in the context of factors which may impact on follow-up elimination strategies in Solomon Islands, the Southwest Pacific and elsewhere in the endemic world where both P. falciparum and P. vivax are co-endemic.
    corecore