626 research outputs found

    Dynamics of localization in a waveguide

    Get PDF
    This is a review of the dynamics of wave propagation through a disordered N-mode waveguide in the localized regime. The basic quantities considered are the Wigner-Smith and single-mode delay times, plus the time-dependent power spectrum of a reflected pulse. The long-time dynamics is dominated by resonant transmission over length scales much larger than the localization length. The corresponding distribution of the Wigner-Smith delay times is the Laguerre ensemble of random-matrix theory. In the power spectrum the resonances show up as a 1/t^2 tail after N^2 scattering times. In the distribution of single-mode delay times the resonances introduce a dynamic coherent backscattering effect, that provides a way to distinguish localization from absorption.Comment: 18 pages including 8 figures; minor correction

    Dynamic effect of phase conjugation on wave localization

    Get PDF
    We investigate what would happen to the time dependence of a pulse reflected by a disordered single-mode waveguide, if it is closed at one end not by an ordinary mirror but by a phase-conjugating mirror. We find that the waveguide acts like a virtual cavity with resonance frequency equal to the working frequency omega_0 of the phase-conjugating mirror. The decay in time of the average power spectrum of the reflected pulse is delayed for frequencies near omega_0. In the presence of localization the resonance width is tau_s^{-1}exp(-L/l), with L the length of the waveguide, l the mean free path, and tau_s the scattering time. Inside this frequency range the decay of the average power spectrum is delayed up to times t simeq tau_s exp(L/l).Comment: 10 pages including 2 figure

    Antiseizure medication withdrawal risk estimation and recommendations: A survey of American Academy of Neurology and EpiCARE members

    Get PDF
    Objective Choosing candidates for antiseizure medication (ASM) withdrawal in well‐controlled epilepsy is challenging. We evaluated (a) the correlation between neurologists' seizure risk estimation (“clinician predictions”) vs calculated predictions, (b) how viewing calculated predictions influenced recommendations, and (c) barriers to using risk calculation.MethodsWe asked US and European neurologists to predict 2‐year seizure risk after ASM withdrawal for hypothetical vignettes. We compared ASM withdrawal recommendations before vs after viewing calculated predictions, using generalized linear models. Results Three‐hundred and forty‐six neurologists responded. There was moderate correlation between clinician and calculated predictions (Spearman coefficient 0.42). Clinician predictions varied widely, for example, predictions ranged 5%‐100% for a 2‐year seizure‐free adult without epileptiform abnormalities. Mean clinician predictions exceeded calculated predictions for vignettes with epileptiform abnormalities (eg, childhood absence epilepsy: clinician 65%, 95% confidence interval [CI] 57%‐74%; calculated 46%) and surgical vignettes (eg, focal cortical dysplasia 6‐month seizure‐free mean clinician 56%, 95% CI 52%‐60%; calculated 28%). Clinicians overestimated the influence of epileptiform EEG findings on withdrawal risk (26%, 95% CI 24%‐28%) compared with calculators (14%, 95% 13%‐14%). Viewing calculated predictions slightly reduced willingness to withdraw (−0.8/10 change, 95% CI −1.0 to −0.7), particularly for vignettes without epileptiform abnormalities. The greatest barrier to calculator use was doubting its accuracy (44%). Significance Clinicians overestimated the influence of abnormal EEGs particularly for low‐risk patients and overestimated risk and the influence of seizure‐free duration for surgical patients, compared with calculators. These data may question widespread ordering of EEGs or time‐based seizure‐free thresholds for surgical patients. Viewing calculated predictions reduced willingness to withdraw particularly without epileptiform abnormalities

    Current concepts in the treatment of intra-articular calcaneal fractures: results of a nationwide survey

    Get PDF
    The treatment of intra-articular calcaneal fractures is controversial and randomised clinical trials are scarce. Moreover, the socio-economic cost remains unclear. The aim of this study was to estimate the incidence, treatment preferences and socio-economic cost of this complex fracture in the Netherlands. This data may aid in planning future clinical trials and support education. The method of study was of a cross-sectional survey design. A written survey was sent to one representative of both the traumatology and the orthopaedic staff in each hospital in the Netherlands. Data on incidence, treatment modalities, complications and follow-up strategies were recorded. The socio-economic cost was calculated. The average response rate was 70%. Fracture classifications, mostly by Sanders and Essex-Lopresti, were applied by 29%. Annually, 920 intra-articular calcaneal fractures (0.4% incidence rate) were treated, mainly with ORIF (46%), conservative (39%) and percutaneous (10%) treatment. The average non-weight-bearing mobilisation was 9 weeks (SD 2 weeks). An outcome score, mainly AOFAS, was documented by 7%. A secondary arthrodesis was performed in 21% of patients. The socio-economic cost was estimated to be €21.5–30.7 million. Dutch intra-articular calcaneal fracture incidence is at least 0.4% of all fractures presenting to hospitals. Better insight into treatment modalities currently employed and costs in the Netherlands was obtained

    Frequency spectra of cosmic ray air shower radio emission measured with LOPES

    Get PDF
    AIMS: We wish to study the spectral dependence of the radio emission from cosmic-ray air showers around 100 PeV (1017 eV). METHODS: We observe short radio pulses in a broad frequency band with the dipole-interferometer LOPES (LOFAR Prototype Station), which is triggered by a particle detector array named Karlsruhe Shower Core and Array Detector (KASCADE). LOFAR is the Low Frequency Array. For this analysis, 23 strong air shower events are selected using parameters from KASCADE. RESULTS: The resulting electric field spectra fall off to higher frequencies. An average electric field spectrum is fitted with an exponential, or alternatively, with a power law. The spectral slope obtained is not consistent within uncertainties and it is slightly steeper than the slope obtained from Monte Carlo simulations based on air showers simulated with CORSIKA (Cosmic Ray Simulations for KASCADE). One of the strongest events was measured during thunderstorm activity in the vicinity of LOPES and shows the longest pulse length measured of 110 ns and a spectral slope of -3.6. CONCLUSIONS: We show with two different methods that frequency spectra from air shower radio emission can be reconstructed on event-by-event basis, with only two dozen dipole antennae simultaneously over a broad range of frequencies. According to the obtained spectral slopes, the maximum power is emitted below 40 MHz. Furthermore, the decrease in power to higher frequencies indicates a loss in coherence determined by the shower disc thickness. We conclude that a broader bandwidth, larger collecting area, and longer baselines, as will be provided by LOFAR, are necessary to further investigate the relation of the coherence, pulse length, and spectral slope of cosmic ray air showers.Comment: 13 pages, 21 figures. Nigl, A. et al. (LOPES Collaboration), Frequency spectra of cosmic ray air shower radio emission measured with LOPES, accepted by A&A on 17/06/200

    Radio Emission in Atmospheric Air Showers: First Measurements with LOPES-30

    Get PDF
    When Ultra High Energy Cosmic Rays interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating toward the ground. LOPES-30 is an absolutely calibrated array of 30 dipole antennas investigating the radio emission from these showers in detail and clarifying if the technique is useful for largescale applications. LOPES-30 is co-located and measures in coincidence with the air shower experiment KASCADE-Grande. Status of LOPES-30 and first measurements are presented.Comment: Proceedings of ARENA 06, June 2006, University of Northumbria, U

    Wisdom of groups promotes cooperation in evolutionary social dilemmas

    Get PDF
    Whether or not to change strategy depends not only on the personal success of each individual, but also on the success of others. Using this as motivation, we study the evolution of cooperation in games that describe social dilemmas, where the propensity to adopt a different strategy depends both on individual fitness as well as on the strategies of neighbors. Regardless of whether the evolutionary process is governed by pairwise or group interactions, we show that plugging into the "wisdom of groups" strongly promotes cooperative behavior. The more the wider knowledge is taken into account the more the evolution of defectors is impaired. We explain this by revealing a dynamically decelerated invasion process, by means of which interfaces separating different domains remain smooth and defectors therefore become unable to efficiently invade cooperators. This in turn invigorates spatial reciprocity and establishes decentralized decision making as very beneficial for resolving social dilemmas.Comment: 8 two-column pages, 7 figures; accepted for publication in Scientific Report

    Radio emission of highly inclined cosmic ray air showers measured with LOPES

    Get PDF
    LOPES (LOFAR Prototype Station) is an array of dipole antennas used for detection of radio emission from air showers. It is co-located and triggered by the KASCADE (Karlsruhe Shower Core and Array Detector) experiment, which also provides informations about air shower properties. Even though neither LOPES nor KASCADE are completely optimized for the detection of highly inclined events, a significant number of showers with zenith angle larger than 50o^o have been detected in the radio domain, and many with very high field strengths. Investigation of inclined showers can give deeper insight into the nature of primary particles that initiate showers and also into the possibility that some of detected showers are triggered by neutrinos. In this paper, we show the example of such an event and present some of the characteristics of highly inclined showers detected by LOPES

    Radio detection of cosmic ray air showers with LOPES

    Get PDF
    In the last few years, radio detection of cosmic ray air showers has experienced a true renaissance, becoming manifest in a number of new experiments and simulation efforts. In particular, the LOPES project has successfully implemented modern interferometric methods to measure the radio emission from extensive air showers. LOPES has confirmed that the emission is coherent and of geomagnetic origin, as expected by the geosynchrotron mechanism, and has demonstrated that a large scale application of the radio technique has great potential to complement current measurements of ultra-high energy cosmic rays. We describe the current status, most recent results and open questions regarding radio detection of cosmic rays and give an overview of ongoing research and development for an application of the radio technique in the framework of the Pierre Auger Observatory.Comment: 8 pages; Proceedings of the CRIS2006 conference, Catania, Italy; to be published in Nuclear Physics B, Proceedings Supplement
    • 

    corecore