1,023 research outputs found

    Metastasis suppression: a role of the Dice(r)

    Get PDF
    Recent studies have implicated the microRNA biogenesis enzyme Dicer as a suppressor of breast carcinoma metastasis and elucidated upstream signaling pathways that control Dicer levels.National Institutes of Health (U.S.)Massachusetts Institute of Technology. Ludwig Center for Molecular OncologyUnited States. Dept. of DefenseBreast Cancer Research Foundatio

    Roles of the MicroRNA miR-31 in tumor metastasis and an experimental system for the unbiased discovery of genes relevant for breast cancer metastasis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references.In these studies, the microRNA miR-31 was identified as a potent inhibitor of breast cancer metastasis. miR-31 expression levels were inversely associated with the propensity to develop metastatic disease in human breast cancer patients. Additionally, various functional analysis revealed that miR-31 expression was both necessary and sufficient to impede breast cancer metastasis. These effects did not involve confounding influences on primary tumor development; instead, miR-31 exerted its anti-metastatic activities by impinging upon at least three distinct steps of the invasion-metastasis cascade: local invasion, one or more early post intravasation events, and metastatic colonization. At a mechanistic level, miR-31 impaired metastasis via the pleiotropic suppression of a cohort of target genes that otherwise operate to promote metastasis, including integrin a5, radixin, and RhoA. Significantly, the concomitant re-expression of integrin a5, radixin, and RhoA sufficed to override the full spectrum of miR-31'7s anti-metastatic activities. Moreover, the concurrent short hairpin RNA-conferred knockdown of endogenous integrin a5, radixin, and RhoA levels closely phenocopied the known consequences of ectopic miR-31 expression on metastasis. Integrin a5, radixin, and RhoA were found to act during at least partially unique steps of the invasion-metastasis cascade downstream of miR-31. Notably, the temporally controlled re-activation of miR-31 in already-established metastases elicited metastatic regression. These anti-metastatic therapeutic responses were attributable to the capacity of acutely re-expressed miR-31 to induce both cell cycle arrest and apoptosis; such effects arose specifically within the context of the foreign microenvironment present at a metastatic locus. When taken together, these findings provide mechanistic insights concerning the regulation of breast cancer metastasis and suggest that miR-31 may represent a clinically useful prognostic biomarker and/or therapeutic target in certain aggressive human carcinomas. In addition, a novel experimental system for the unbiased identification of metastasisrelevant genes was described. The utility of this system was demonstrated in an initial proof-of-concept screen, which implicated RhoJ as a previously unappreciated modulator of cell motility. Collectively, these observations imply that the single-cell clone-based screening methodology outlined herein may represent a generally useful means by which to enumerate novel regulators of various metastasis-relevant processes.by Scott J. Valastyan.Ph.D

    Insights into alpha-synuclein and TorsinA biology

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2013.Cataloged from PDF version of thesis. Vita.Includes bibliographical references.The yeast Saccharomyces cerevisiae has long been used to model complex cellular processes. As a eukaryote, much of its fundamental biology is conserved with higher organisms. As a single-celled, genetically tractable organism, it can easily be utilized for both high-throughput screening and hypothesis-driven analysis. Therefore, many groups use yeast to model disease-related proteins. One such model utilizes heterologous expression of [alpha]-synuclein ([alpha]-syn), a protein implicated in the progression of Parkinson's disease and other synucleinopathies. [alpha]-Syn expression in yeast is associated with many phenotypes that are recapitulated in higher organisms. Here, I used yeast to characterize two naturally occurring splice isoforms of [alpha]-syn, [alpha]-syn[delta]4 and [alpha]-syn[delta]6. Levels of these isoforms vary between synucleinopathies but little is known about their biology. I found that these splice isoforms display different localization patterns than full-length [alpha]-syn ([alpha]-synFL) and are less toxic in yeast. However, when expressed at a high level, both splice isoforms can exert toxicity and affect similar processes to [alpha]-synFL. Interestingly, the splice isoforms show differential responses to perturbations in sterol homeostasis. Studies concerning the relationship between sterol levels and synucleinopathy progression have been contradictory. Our findings reveal that [alpha]-syn[delta]4 is less sensitive to changes in sterol levels than [alpha]-synFL and [alpha]-syn[delta]6, suggesting that change in [alpha]-syn splice isoforms levels is a potential mechanism for these conflicting results. I also describe an attempt to model torsinA pathobiology in yeast. Mutations in torsinA cause early onset torsion dystonia, a devastating motor disorder. This protein has been described to function in regulating endoplasmic reticulum (ER) stress through the unfolded protein response (UPR). While I was unable to recapitulate a role for torsinA in the UPR in yeast, this model can serve as a platform for discovery of torsinA cofactors that enable it to act in this capacity, especially as more is uncovered concerning torsinA's role in the UPR. This thesis highlights both the strengths and limitations of modeling disease proteins in yeast. More specifically, my success with [alpha]-syn splice isoforms may provide insight into synucleinopathy etiology, while my inability to model torsinA-induced toxicity can inform subsequent attempts to study disease related proteins in yeast.by Julie S. Valastyan.Ph.D

    A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis

    Get PDF
    MicroRNAs are well suited to regulate tumor metastasis because of their capacity to coordinately repress numerous target genes, thereby potentially enabling their intervention at multiple steps of the invasion-metastasis cascade. We identify a microRNA exemplifying these attributes, miR-31, whose expression correlates inversely with metastasis in human breast cancer patients. Overexpression of miR-31 in otherwise-aggressive breast tumor cells suppresses metastasis. We deploy a stable microRNA sponge strategy to inhibit miR-31 in vivo; this allows otherwise-nonaggressive breast cancer cells to metastasize. These phenotypes do not involve confounding influences on primary tumor development and are specifically attributable to miR-31-mediated inhibition of several steps of metastasis, including local invasion, extravasation or initial survival at a distant site, and metastatic colonization. Such pleiotropy is achieved via coordinate repression of a cohort of metastasis-promoting genes, including RhoA. Indeed, RhoA re-expression partially reverses miR-31-imposed metastasis suppression. These findings indicate that miR-31 uses multiple mechanisms to oppose metastasis.Massachusetts Institute of Technology (Daniel K. Ludwig Foundation Cancer Research Professor)American Cancer Society (ACS Research Professor)United States. Dept. of Defense (Breast Cancer Research Program Predoctoral Fellow)United States. Dept. of Defense (Breast Cancer Research Program, DoD BCRP Idea Award))Harvard University (Harvard Breast Cancer SPORE)National Institutes of Health (U.S.) (RO1 CA078461)National Institutes of Health (U.S.) (PO1 CA080111

    miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis

    Get PDF
    MicroRNAs (miRNAs) are increasingly implicated in regulating the malignant progression of cancer. Here we show that miR-9, which is upregulated in breast cancer cells, directly targets CDH1, the E-cadherin-encoding messenger RNA, leading to increased cell motility and invasiveness. miR-9-mediated E-cadherin downregulation results in the activation of Ī²-catenin signalling, which contributes to upregulated expression of the gene encoding vascular endothelial growth factor (VEGF); this leads, in turn, to increased tumour angiogenesis. Overexpression of miR-9 in otherwise non-metastatic breast tumour cells enables these cells to form pulmonary micrometastases in mice. Conversely, inhibiting miR-9 by using a 'miRNA sponge' in highly malignant cells inhibits metastasis formation. Expression of miR-9 is activated by MYC and MYCN, both of which directly bind to the mir-9-3 locus. Significantly, in human cancers, miR-9 levels correlate with MYCN amplification, tumour grade and metastatic status. These findings uncover a regulatory and signalling pathway involving a metastasis-promoting miRNA that is predicted to directly target expression of the key metastasis-suppressing protein E-cadherin.Life Sciences Research Foundation FellowshipMargaret and Herman Sokol AwardNational Institutes of Health (U.S.) (Pathway to Independence Award (K99/R00))Howard Hughes Medical Institute (Undergraduate Fellowship)Breast Cancer Research Program (U.S.) (Predoctoral Fellowship)National Institutes of Health (U.S.) (Grant)Ludwig Center for Molecular Oncology at MI

    PICALM Rescues Endocytic Defects Caused by the Alzheimer's Disease Risk Factor APOE4

    Get PDF
    APOE4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). Narayan and Sienski et al. find that APOE4 disrupts early endocytosis, a process by which cells take up external material. By increasing the levels of another AD risk factor, PICALM, the authors are able to reverse these disruptions

    p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins

    Get PDF
    The tumor suppressor p53 is a central regulator of cell-cycle arrest and apoptosis by acting as a transcription factor to regulate numerous genes. We identified all human p53-regulated mRNAs by microarray analyses and searched for protein-coding genes which contain intronic miRNAs. Among others, this analysis yielded the panthothenate kinase 1 (PANK1) gene and its intronic miRNA-107. We showed that miRNA-107 and PANK1 are coregulated by p53 in different cell systems. The PANK1 protein, which catalyzes the rate-limiting step of coenzyme A biosynthesis, is also upregulated by p53. We observed that p53 directly activates PANK1 and miRNA-107 transcription through a binding site in the PANK1 promoter. Furthermore, p53 is recruited to the PANK1 promoter after DNA damage. In order to get more insight into miRNA-107 function we investigated its potential target genes. Cell-cycle regulators are significantly enriched among predicted miRNA-107 targets. We found miRNA-107-dependent regulation of two important regulators of G1/S progression, CDK6 and the RB-related 2 gene RBL2 (p130). CDK6 and p130 proteins are downregulated upon miRNA-107 expression. Our results uncover a novel miRNA-dependent signaling pathway which leads to downregulation of cell cycle proteins in the absence of transcriptional repression

    Anti-inflammatory and cell proliferative effect of the 1270 nm laser irradiation on the BALB/c Nude mouse model involves activation of the cell antioxidant system

    Get PDF
    Recently, many interdisciplinary community researchers have focused their efforts on study of the low-level light irradiation effects (photobiomodulation, PBM) as a promising therapeutic technology. Among the priorities, a search of new wavelength ranges of laser radiation to enhance the laser prospects in treatment of autoimmune and cancer diseases commonly accompanied by disorders in the antioxidant system of the body. The laser wavelengths within 1265-1270 nm corresponds to the maximum oxygen absorption band. Therefore, PBM effects on a model organism within this spectrum range are of particular interest for preclinical research. Here, we report comprehensive biomolecular studies of the changes in the BALB/c nude mice skin after an exposure to the continuous laser radiation at the 1270 nm wavelength and energy densities of 0.12 and 1.2 J/cm2. Such regime induces both local and systemic PBM effects, presumably due to the short-term increase in ROS levels, which in turn activate the cell antioxidative system

    Regulation of Cancer Aggressive Features in Melanoma Cells by MicroRNAs

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs with regulatory roles, which are involved in a broad spectrum of physiological and pathological processes, including cancer. A common strategy for identification of miRNAs involved in cell transformation is to compare malignant cells to normal cells. Here we focus on identification of miRNAs that regulate the aggressive phenotype of melanoma cells. To avoid differences due to genetic background, a comparative high-throughput miRNA profiling was performed on two isogenic human melanoma cell lines that display major differences in their net proliferation, invasion and tube formation activities. This screening revealed two major cohorts of differentially expressed miRNAs. We speculated that miRNAs up-regulated in the more-aggressive cell line contribute oncogenic features, while the down-regulated miRNAs are tumor suppressive. This assumption was further tested experimentally on five candidate tumor suppressive miRNAs (miR-31, -34a, -184, -185 and -204) and on one candidate oncogenic miRNA (miR-17-5p), all of which have never been reported before in cutaneous melanoma. Remarkably, all candidate Suppressive-miRNAs inhibited net proliferation, invasion or tube formation, while miR-17-5p enhanced cell proliferation. miR-34a and miR-185 were further shown to inhibit the growth of melanoma xenografts when implanted in SCID-NOD mice. Finally, all six candidate miRNAs were detected in 15 different metastatic melanoma specimens, attesting for the physiological relevance of our findings. Collectively, these findings may prove instrumental for understanding mechanisms of disease and for development of novel therapeutic and staging technologies for melanoma

    Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments

    Get PDF
    The cancer microenvironment, which incorporates interactions with stromal cells, extracellular matrix (ECM), and other tumor cells in a 3-dimensional (3D) context, has been implicated in every stage of cancer development, including growth of the primary tumor, metastatic spread, and response to treatment. Our understanding of the tumor microenvironment and our ability to develop new therapies would greatly benefit from tools that allow us to systematically probe microenvironmental cues within a 3D context. Here, we leveraged recent advances in microfluidic technology to develop a platform for high-throughput fabrication of tunable cellular microniches (ā€œmicrotissuesā€) that allow us to probe tumor cell response to a range of microenvironmental cues, including ECM, soluble factors, and stromal cells, all in 3D. We further combine this tunable microniche platform with rapid, flow-based population level analysis (n > 500), which permits analysis and sorting of microtissue populations both pre- and post-culture by a range of parameters, including proliferation and homotypic or heterotypic cell density. We used this platform to demonstrate differential responses of lung adenocarcinoma cells to a selection of ECM molecules and soluble factors. The cells exhibited enhanced or reduced proliferation when encapsulated in fibronectin- or collagen-1-containing microtissues, respectively, and they showed reduced proliferation in the presence of TGF-Ī², an effect that we did not observe in monolayer culture. We also measured tumor cell response to a panel of drug targets and found, in contrast to monolayer culture, specific sensitivity of tumor cells to TGFĪ²R2 inhibitors, implying that TGF-Ī² has an anti-proliferative affect that is unique to the 3D context and that this effect is mediated by TGFĪ²R2. These findings highlight the importance of the microenvironmental context in therapeutic development and that the platform we present here allows the high-throughput study of tumor response to drugs as well as basic tumor biology in well-defined microenvironmental niches.American Association for Cancer Research (Stand Up to Cancer Charitable Initiative)National Institute for Biomedical Imaging and Bioengineering (U.S.) (National Research Service Award Fellowship)National Science Foundation (U.S.) (Graduate Research Fellowship Program Grant 1122374)Howard Hughes Medical Institut
    • ā€¦
    corecore