316 research outputs found

    An innovative radiation hardened CAM architecture

    Get PDF
    An innovative Content Addressable Memory (CAM) cell with radiation hardened (RH) architecture is presented. The RH-CAM is designed using a commercial 28 nm CMOS technology. The circuit has been simulated in worst-case conditions, and the effects due to single particles have been analyzed by injecting a current pulse into a circuit node. The proposed architecture is suitable for real-time pattern recognition tasks in harsh environments, such as front-end electronics in the ATLAS experiment at the Large Hadron Collider (LHC) and in space applications

    65 nm Technology for HEP: Status and Perspective

    Get PDF
    The development of new experiments such as CLIC and the the foreseen Phase 2 pixel upgrades of ATLAS and CMS have very challenging requirements for the design of hybrid pixel readout chips, both in terms of performances and reliability. To face these challenges, the use of a more downscaled CMOS technology compared to previous projects is necessary. The CERN RD53 collaboration is undertaking a R&D programme to evaluate the use of a commercial 65 nm technology and to develop tools and frameworks which will help to design future pixel detectors. This paper gives a short overview of the RD53 collaboration activities and describes some examples of recent developments

    CMOS IC radiation hardening by design

    Get PDF
    Design techniques for radiation hardening of integrated circuits in commercial CMOS technologies are presented. Circuits designed with the proposed approaches are more tolerant to both total dose and to single event effects. The main drawback of the techniques for radiation hardening by design is the increase of silicon area, compared with a conventional design

    A Pixel Read-Out Front-End in 28 nm CMOS with Time and Space Resolution

    Get PDF
    Future high luminosity colliders will require front-end electronics with unprecedented performance, both in space and time resolution (tens of micrometers and tens of picoseconds) and in radiation hardness (tens of megagray). Moreover, the high number of events will generate an enormous quantity of data (some terabits per second), and the limited bandwidth requires to perform data selection as close as possible to the front-end stage, to reduce the amount of data transmitted and stored for off-line analysis.The TimeSpOT (TIME and SPace real-time Operating Tracker) project, funded by INFN, is developing a complete demonstrator of a tracking device including all the features needed for future high luminosity experiments.In this presentation, we describe the first prototype of the readout electronics in 28 nm CMOS technology. The modules of the front-end circuitry have been designed and integrated in a test chip, which will allow us to characterize each block separately, and to connect them in a processing chain to evaluate the overall performance

    Characterization of HV-CMOS detectors in BCD8 technology and of a controlled hybridization technique

    Get PDF
    Radiation detectors built in high-voltage and high-resistivity CMOS technology are an interesting option for the large area pixel-trackers sought for the upgrade of the Large Hadron Collider experiments. A characterisation of the BCD8 technology by STMicroelectronics process has been performed to evaluate its suitability for the realisation of CMOS sensors with a depleted region of several tens of micrometer. Sensors featuring 50 7250 \u3bcm2 pixels on a 125 \u3a9cm resistivity substrate have been characterized. The response to ionizing radiation is tested using radioactive sources and an X-ray tune, reading out the detector with an external spectroscopy chain. Irradiation tests were performed up to proton fluences exceeding 5 c51015 p/cm2 and they show the depletion and breakdown voltages increases with irradiation. A hybridization process for capacitive coupling has been developed. Assemblies have been performed using the ATLAS FE-I4 readout ASIC and prototype CMOS sensors. Measurements show a planarity better than 1.5 \u3bcm peak-to-peak on the 5 mm length of the HV-CMOS chip. To evaluate more precisely the achievable uniformity dummy chips of FE-I4 sizes have been made on 6-inch wafers. The measurement of the 24 capacitors on each chip is expected to achieve a precise estimation of the real thickness uniformity. The goal is to achieve less then 10% variation on the glue thickness ( 3c0.5 \u3bcm)

    Performance of the AMBFTK board for the FastTracker processor for the ATLAS detector upgrade

    Get PDF
    Modern experiments at hadron colliders search for extremely rare processes hidden in a very large background. As the experiment complexity and the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive selections. The FastTracker (FTK) processor for the ATLAS experiment offers extremely powerful, very compact and low power consumption processing units for the future, which is essential for increased efficiency and purity in the Level 2 trigger selection through the intensive use of tracking. Pattern recognition is performed with Associative Memories (AM). The AMBFTK board and the AMchip04 integrated circuit have been designed specifically for this purpose. We report on the preliminary test results of the first prototypes of the AMBFTK board and of the AMchip04

    Data-analysis strategies for image-based cell profiling

    Get PDF
    Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe

    Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells

    Get PDF
    How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus–host interactions upstream of infectious entry offer new perspectives for anti-viral interference

    Going against the herd: psychological and cultural factors underlying the 'vaccination confidence gap'

    Get PDF
    By far the most common strategy used in the attempt to modify negative attitudes toward vaccination is to appeal to evidence-based reasoning. We argue, however, that focusing on science comprehension is inconsistent with one of the key facts of cognitive psychology: Humans are biased information processors and often engage in motivated reasoning. On this basis, we hypothesised that negative attitudes can be explained primarily by factors unrelated to the empirical evidence for vaccination; including some shared attitudes that also attract people to complementary and alternative medicine (CAM). In particular, we tested psychosocial factors associated with CAM endorsement in past research; including aspects of spirituality, intuitive (vs analytic) thinking styles, and the personality trait of openness to experience. These relationships were tested in a cross-sectional, stratified CATI survey (N = 1256, 624 Females). Whilst educational level and thinking style did not predict vaccination rejection, psychosocial factors including: preferring CAM to conventional medicine (OR .49, 95% CI .36 .83, 95% CI .71 to vaccination. Furthermore, for 9 of the 12 CAMs surveyed, utilisation in the last 12 months was associated with lower levels of vaccination endorsement. From this we suggest that vaccination scepticism appears to be the outcome of a particular cultural and psychological orientation leading to unwillingness to engage with the scientific evidence. Vaccination compliance might be increased either by building general confidence and understanding of evidence-based medicine, or by appealing to features usually associated with CAM, e.g.–.66), endorsement of spirituality as a source of knowledge (OR–.96), and openness (OR .86, 95% CI .74–.99), all predicted negative attitudes‘strengthening your natural resistance to disease’
    corecore