951 research outputs found

    Automated microorganism Sample Collection Module

    Get PDF
    Modified Gelman Sampler obtains representative sample of microorganism population. Proposed Sample Collection Module is based on direct inoculation of selected solid growth media encased in a cartridge at all times except during inoculation. Cartridge can be handled with no danger of contamination to sample or operator

    Retention of Stellar-Mass Black Holes in Globular Clusters

    Full text link
    Globular clusters should be born with significant numbers of stellar-mass black holes (BHs). It has been thought for two decades that very few of these BHs could be retained through the cluster lifetime. With masses ~10 MSun, BHs are ~20 times more massive than an average cluster star. They segregate into the cluster core, where they may eventually decouple from the remainder of the cluster. The small-N core then evaporates on a short timescale. This is the so-called Spitzer instability. Here we present the results of a full dynamical simulation of a globular cluster containing many stellar-mass BHs with a realistic mass spectrum. Our Monte Carlo simulation code includes detailed treatments of all relevant stellar evolution and dynamical processes. Our main finding is that old globular clusters could still contain many BHs at present. In our simulation, we find no evidence for the Spitzer instability. Instead, most of the BHs remain well-mixed with the rest of the cluster, with only the innermost few tens of BHs segregating significantly. Over the 12 Gyr evolution, fewer than half of the BHs are dynamically ejected through strong binary interactions in the cluster core. The presence of BHs leads to long-term heating of the cluster, ultimately producing a core radius on the high end of the distribution for Milky Way globular clusters (and those of other galaxies). A crude extrapolation from our model suggests that the BH--BH merger rate from globular clusters could be comparable to the rate in the field.Comment: 5 pages, 4 figures, 1 table, published in Astrophysical Journal Letter

    Monte Carlo Simulations of Globular Cluster Evolution. VI. The Influence of an Intermediate Mass Black Hole

    Full text link
    We present results of a series of Monte Carlo simulations investigating the imprint of a central intermediate-mass black hole (IMBH) on the structure of a globular cluster. We investigate the three-dimensional and projected density profiles, and stellar disruption rates for idealized as well as realistic cluster models, taking into account a stellar mass spectrum and stellar evolution, and allowing for a larger, more realistic, number of stars than was previously possible with direct N-body methods. We compare our results to other N-body and Fokker-Planck simulations published previously. We find, in general, very good agreement for the overall cluster structure and dynamical evolution between direct N-body simulations and our Monte Carlo simulations. Significant differences exist in the number of stars that are tidally disrupted by the IMBH, which is most likely an effect of the wandering motion of the IMBH, not included in the Monte Carlo scheme. These differences, however, are negligible for the final IMBH masses in realistic cluster models as the disruption rates are generally much lower than for single-mass clusters. As a direct comparison to observations we construct a detailed model for the cluster NGC 5694, which is known to possess a central surface brightness cusp consistent with the presence of an IMBH. We find that not only the inner slope but also the outer part of the surface brightness profile agree well with observations. However, there is only a slight preference for models harboring an IMBH compared to models without.Comment: 37 pages, 10 figures, Accepted for publication in ApJ Supplement. Substantial additions on modeling NGC 5694 since original versio

    Understanding the Dynamical State of Globular Clusters: Core-Collapsed vs Non Core-Collapsed

    Full text link
    We study the dynamical evolution of globular clusters using our H\'enon-type Monte Carlo code for stellar dynamics including all relevant physics such as two-body relaxation, single and binary stellar evolution, Galactic tidal stripping, and strong interactions such as physical collisions and binary mediated scattering. We compute a large database of several hundred models starting from broad ranges of initial conditions guided by observations of young and massive star clusters. We show that these initial conditions very naturally lead to present day clusters with properties including the central density, core radius, half-light radius, half-mass relaxation time, and cluster mass, that match well with those of the old Galactic globular clusters. In particular, we can naturally reproduce the bimodal distribution in observed core radii separating the "core-collapsed" vs the "non core-collapsed" clusters. We see that the core-collapsed clusters are those that have reached or are about to reach the equilibrium "binary burning" phase. The non core-collapsed clusters are still undergoing gravo-thermal contraction.Comment: 42 pages, 12 figures, 1 table, submitted to MNRA

    The Decay of Accreting Triple Systems as Brown Dwarf Formation Scenario

    Full text link
    We investigate the dynamical decay of non-hierarchical accreting triple systems and its implications on the ejection model as Brown Dwarf formation scenario. A modified chain-regularization scheme is used to integrate the equations of motion, that also allows for mass changes over time as well as for momentum transfer from the accreted gas mass onto the bodies. We integrate an ensemble of triple systems within a certain volume with different accretion rates, assuming several prescriptions of how momentum is transferred onto the bodies. We follow their evolution until the systems have decayed. We analyze the end states and decay times of these systems and determine the fraction of Brown Dwarfs formed, their escape speeds as well as the semi-major axis distribution of the formed Brown Dwarf binaries. We find that the formation probability of Brown Dwarfs depends strongly on the assumed momentum transfer which is related to the motion of the gas. Due to ongoing accretion and consequent shrinkage of the systems, the median escape velocity is increased by a factor of 2 and the binary separations are decreased by a factor of 5 compared with non-accreting systems. Furthermore, the obtained semi-major axis distribution drops off sharply to either side of the median, which is also supported by observations. We conclude that accretion and momentum transfer of accreted gas during the dynamical decay of triple systems is able to produce the observed distribution of close binary Brown Dwarfs, making the ejection model a viable option as Brown Dwarf formation scenario.Comment: 31 pages, 8 figures, accepted for publication in Ap

    Monte Carlo Simulations of Globular Cluster Evolution. V. Binary Stellar Evolution

    Full text link
    We study the dynamical evolution of globular clusters containing primordial binaries, including full single and binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and binary stellar evolution codes SSE/BSE from Hurley et. al (2000, 2002). We describe the modifications we have made to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of the code. We show that our code finds very good agreement with direct N-body simulations including primordial binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated clusters using stellar evolution compared to simulations without any stellar evolution. In particular, we find that the mass loss from stellar evolution acts as a significant energy production channel simply by reducing the total gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the binary-burning quasi steady state of the cluster evolution as noticed in Paper IV. We simulate a large grid of clusters varying the initial cluster mass, binary fraction, and concentration and compare properties of the simulated clusters with those of the observed Galactic globular clusters (GGCs). We find that our simulated cluster properties agree well with the observed GGC properties. We explore in some detail qualitatively different clusters in different phases of their evolution, and construct synthetic Hertzprung-Russell diagrams for these clusters.Comment: 46 preprint pages, 18 figures, 3 tables, submitted to Ap

    A Spitzer IRAC Imaging Survey for T Dwarf Companions Around M, L, and T Dwarfs: Observations, Results, and Monte Carlo Population Analyses

    Full text link
    We report observational techniques, results, and Monte Carlo population analyses from a Spitzer Infrared Array Camera imaging survey for substellar companions to 117 nearby M, L, and T dwarf systems (median distance of 10 pc, mass range of 0.6 to \sim0.05 M\odot). The two-epoch survey achieves typical detection sensitivities to substellar companions of [4.5 {\mu}m] \leq 17.2 mag for angular separations between about 7" and 165". Based on common proper motion analysis, we find no evidence for new substellar companions. Using Monte Carlo orbital simulations (assuming random inclination, random eccentricity, and random longitude of pericenter), we conclude that the observational sensitivities translate to an ability to detect 600-1100K brown dwarf companions at semimajor axes greater than ~35 AU, and to detect 500-600K companions at semimajor axes greater than ~60 AU. The simulations also estimate a 600-1100K T dwarf companion fraction of < 3.4% for 35-1200 AU separations, and < 12.4% for the 500-600K companions, for 60-1000 AU separations.Comment: 35 pages, 6 figure

    Binarity at the L/T brown dwarf transition

    Full text link
    Current atmospheric models cannot reproduce some of the characteristics of the transition between the L dwarfs with cloudy atmospheres and the T dwarfs with dust-depleted photospheres. It has been proposed that a majority of the L/T transition brown dwarfs could actually be a combinaison of a cloudy L dwarf and a clear T dwarf. Indeed binarity seems to occur more frequently among L/T transition brown dwarfs. We aim to refine the statistical significance of the seemingly higher frequency of binaries. Co-eval binaries would also be interesting test-beds for evolutionary models. We obtained high-resolution imaging for six mid-L to late-T dwarfs, with photometric distances between 8 and 33pc, using the adaptive optics systems NACO at the VLT, and the Lick system, both with the laser guide star. We resolve none of our targets. Combining our data with published results, we obtain a frequency of resolved L/T transition brown dwarfs of (31+21-15)%, compared to (21+10-7)% and (14+14-7)% for mid-L and T dwarfs (90% of confidence level). These fractions do not significantly support, nor contradict, the hypothesis of a larger binary fraction in the L/T transition. None of our targets has companions with effective temperatures as low as 360-1000K at separations larger than 0.5".Comment: 6 pages, 4 figures, accepted by A&
    corecore