1,124 research outputs found

    Laboratory colonisation and genetic bottlenecks in the tsetse fly Glossina pallidipes

    Get PDF
    Background The IAEA colony is the only one available for mass rearing of Glossina pallidipes, a vector of human and animal African trypanosomiasis in eastern Africa. This colony is the source for Sterile Insect Technique (SIT) programs in East Africa. The source population of this colony is unclear and its genetic diversity has not previously been evaluated and compared to field populations.<p></p> Methodology/Principal Findings We examined the genetic variation within and between the IAEA colony and its potential source populations in north Zimbabwe and the Kenya/Uganda border at 9 microsatellites loci to retrace the demographic history of the IAEA colony. We performed classical population genetics analyses and also combined historical and genetic data in a quantitative analysis using Approximate Bayesian Computation (ABC). There is no evidence of introgression from the north Zimbabwean population into the IAEA colony. Moreover, the ABC analyses revealed that the foundation and establishment of the colony was associated with a genetic bottleneck that has resulted in a loss of 35.7% of alleles and 54% of expected heterozygosity compared to its source population. Also, we show that tsetse control carried out in the 1990's is likely reduced the effective population size of the Kenya/Uganda border population.<p></p> Conclusions/Significance All the analyses indicate that the area of origin of the IAEA colony is the Kenya/Uganda border and that a genetic bottleneck was associated with the foundation and establishment of the colony. Genetic diversity associated with traits that are important for SIT may potentially have been lost during this genetic bottleneck which could lead to a suboptimal competitiveness of the colony males in the field. The genetic diversity of the colony is lower than that of field populations and so, studies using colony flies should be interpreted with caution when drawing general conclusions about G. pallidipes biology.<p></p&gt

    The effect of operating conditions on post-injection fuel discharge in an optical engine

    Get PDF
    After the end of injection, the needle closes and residual fuel present inside the injector sac and orifices is discharged due to the high fluid inertia. This so-called post-injection fuel discharge can present several problems. The excess fuel can undergo incomplete combustion due to its large, slow moving and often surface-bound nature. Not only does this have a negative effect on emissions and performance, but it has been speculated that the by-products of incomplete combustion are implicated in the growth of carbonaceous deposits on the tips of fuel injectors. Accumulation of these deposits is known to lead to premature fuel injector failure that can lead to re-ductions in power output and engine lifetime. Seeing as modern multiple-injection strategies give rise to an in-creased number of transient injection phases, post-injection discharges are an increasingly common occurrence during normal operating conditions. In order to develop a phenomenological model for the fluid dynamics after the end of injection, there is a need to characterise the causes of this discharge and how they might be influenced by engine operating conditions. In this study we present ongoing analysis into results from the first visualisation of post injection fuel discharge at the microscopic level under engine-like operating conditions. We observed the process of fuel discharge for multi-hole injectors, using a high-speed camera fitted with a long-distance micro-scope and a high-speed laser illumination source. We related the effect of a variety of operating conditions on the severity of this process, including injection pressure and in-cylinder pressure along with a characterisation of the dynamics of the various modes by which these undesired liquid structures are produced. We present the different modes by which this process occurs and we conclude that the extent of post-injection discharge depends on both the in-cylinder and injection pressures

    Spreading of two-dimensional axisymmetric vortices exposed to a rotating strain field

    Get PDF
    Copyright © 2009 Cambridge University PressThis paper examines the evolution of an axisymmetric two-dimensional vortex in a steadily rotating strain field and the dynamical interactions that can enhance vortex spreading through resonant behaviour. Starting with a point vortex localized at the origin, the applied strain field generates a cat's eye topology in the co-rotating streamfunction, localized around a radius rext. Now the vortex is allowed to spread viscously: initially rext lies outside the vortex, but as it spreads, vorticity is advected into the cat's eyes, leading to a local flattening of the mean profile of the vortex and so to enhanced mixing and spreading of the vortex. Together with this is a feedback: the response of the vortex to the external strain depends on the modified profile. The feedback is particularly strong when rext coincides with the radius rcat at which the vortex can support cat's eyes of infinitesimal width. There is a particular time at which this occurs, as these radii change with the viscous spread of the vortex: rext moves inwards and rcat outwards. This resonance behaviour leads to increased mixing of vorticity, along with a rapid stretching of vorticity contours and a sharp increase in the amplitude of the non-axisymmetric components. The dynamical feedback and enhanced diffusion are studied for viscously spreading vortices by means of numerical simulations of their time evolution, parameterized only by the Reynolds number R and the dimensionless strength A of the external strain field

    Diffusion and the formation of vorticity staircases in randomly strained two-dimensional vortices

    Get PDF
    Copyright © 2009 Cambridge University PressThe spreading and diffusion of two-dimensional vortices subject to weak external random strain fields is examined. The response to such a field of given angular frequency depends on the profile of the vortex and can be calculated numerically. An effective diffusivity can be determined as a function of radius and may be used to evolve the profile over a long time scale, using a diffusion equation that is both nonlinear and non-local. This equation, containing an additional smoothing parameter, is simulated starting with a Gaussian vortex. Fine scale steps in the vorticity profile develop at the periphery of the vortex and these form a vorticity staircase. The effective diffusivity is high in the steps where the vorticity gradient is low: between the steps are barriers characterized by low effective diffusivity and high vorticity gradient. The steps then merge before the vorticity is finally swept out and this leaves a vortex with a compact core and a sharp edge. There is also an increase in the effective diffusion within an encircling surf zone. In order to understand the properties of the evolution of the Gaussian vortex, an asymptotic model first proposed by Balmforth, Llewellyn Smith & Young (J. Fluid Mech., vol. 426, 2001, p. 95) is employed. The model is based on a vorticity distribution that consists of a compact vortex core surrounded by a skirt of relatively weak vorticity. Again simulations show the formation of fine scale vorticity steps within the skirt, followed by merger. The diffusion equation we develop has a tendency to generate vorticity steps on arbitrarily fine scales; these are limited in our numerical simulations by smoothing the effective diffusivity over small spatial scales

    Wave packet analysis and break-up length calculations for an accelerating planar liquid jet

    Get PDF
    This paper examines the process of transition to turbulence within an accelerating planar liquid jet. By calculating the propagation and spatial evolution of disturbance wave packets generated at a nozzle where the jet emerges, we are able to estimate break-up lengths and break-up times for different magnitudes of acceleration and different liquid to air density ratios. This study uses a basic jet velocity profile that has shear layers in both air and the liquid either side of the fluid interface. The shear layers are constructed as functions of velocity which behave in line with our CFD simulations of injecting diesel jets. The non-dimensional velocity of the jet along the jet centre-line axis is assumed to take the form V (t) = tanh(at), where the parameter a determines the magnitude of the acceleration. We compare the fully unsteady results obtained by solving the unsteady Rayleigh equation to those of a quasi-steady jet to determine when the unsteady effects are significant and whether the jet can be regarded as quasi-steady in typical operating conditions for diesel engines. For a heavy fluid injecting into a lighter fluid (density ratio ρair/ρjet = q < 1), it is found that unsteady effects are mainly significant at early injection times where the jet velocity profile is changing fastest. When the shear layers in the jet thin with time, the unsteady effects cause the growth rate of the wave packet to be smaller than the corresponding quasi-steady jet, whereas for thickening shear layers the unsteady growth rate is larger than that of the quasi-steady jet. For large accelerations (large a), the unsteady effect remains at later times but its effect on the growth rate of the wave packet decreases as the time after injection increases. As the rate of acceleration is reduced, the range of velocity values for which the jet can be considered as quasi-steady increases until eventually the whole jet can be considered quasi-steady. For a homogeneous jet (q = 1), the range of values of a for which the jet can be considered completely quasi-steady increases to larger values of a. Finally, we investigate approximating the wave packet break-up length calculations with a method that follows the most unstable disturbance wave as the jet accelerates. This approach is similar to that used in CFD simulations as it greatly reduces computational time. We investigate whether or not this is a good approximation for the parameter values typically used in diesel engines

    Modelling of Thermal Sterilization of high-moisture snack foods: feasibility analysis and optimization

    Get PDF
    High-moisture snacks, such as steamed buns and rice cakes, are traditional and popular in Asian countries. However, their shelf life is short, primarily due to microbial spoilage. Current manufacturing methods address this shortcoming through the use of chemical preservatives. To satisfy consumers’ demand for preservative-free food, thermal sterilization of a model high-moisture snack (steamed rice cakes) is investigated in this work. Bacillus cereus spores are heat-resistant pathogens typically found in rice products; hence, they constitute a suitable candidate to assess the effectiveness of thermal sterilization. A validated combination of predicted temperature profile of rice cakes based on thermal properties extracted experimentally with thermal inactivation kinetics of B. cereus spores allows us to assess the sensitivity of processing conditions to sterilization efficiency. Using both experimentation and modelling, it is shown that enhancement of heat transfer by improving convection from the heating medium (either water or steam) has a limited effect on inactivation due to the intrinsic kinetics of spore inactivation

    Insights Into Pāhoehoe Lava Emplacement Using Visible and Thermal Structure-From-Motion Photogrammetry

    Get PDF
    We present the evolution over 3 months of a 2016–2017 pāhoehoe flow at Kīlauea as it changed from a narrow sheet flow into a compound lava field fed by a stable system of tubes. The portion of the flow located on Kīlauea's coastal plain was characterized using helicopter-based visible and thermal structure-from-motion photogrammetry to construct a series of georeferenced digital surface models and thermal maps on eight different days. Results reveal key influences on the emplacement and evolution of such long-lived pāhoehoe flows. This region of the flow grew by ~12 × 10 6 m 3 with a near-constant time-average discharge rate of 1.2–2.7 m 3/s. The development of two tube systems is captured and shows an initial nascent tube enhanced by a narrow topographic confinement, which later inflated and created a topographic inversion that modulated the emplacement of a second flow lobe with its own tube system. The analysis of breakouts at various stages of the field's life suggests that the evolution of the thermal and morphological properties of the flow surface reflect its maturity. Thermal properties of breakouts were used to expand the empirical relationship of breakout cooling to longer timescales. This study contributes to the long-term development and validation of more accurate predictive models for pāhoehoe, required during the management of long-lasting lava flow crises in Hawai'i and elsewhere

    Stability analysis and break-up length calculations for steady planar liquid jets

    Get PDF
    This study uses spatio-temporal stability analysis to investigate the convective and absolute instability properties of a steady unconfined planar liquid jet. The approach uses a piecewise linear velocity profile with a finite-thickness shear layer at the edge of the jet. This study investigates how properties such as the thickness of the shear layer and the value of the fluid velocity at the interface within the shear layer affect the stability properties of the jet. It is found that the presence of a finite-thickness shear layer can lead to an absolute instability for a range of density ratios, not seen when a simpler plug flow velocity profile is considered. It is also found that the inclusion of surface tension has a stabilizing effect on the convective instability but a destabilizing effect on the absolute instability. The stability results are used to obtain estimates for the breakup length of a planar liquid jet as the jet velocity varies. It is found that reducing the shear layer thickness within the jet causes the breakup length to decrease, while increasing the fluid velocity at the fluid interface within the shear layer causes the breakup length to increase. Combining these two effects into a profile, which evolves realistically with velocity, gives results in which the breakup length increases for small velocities and decreases for larger velocities. This behaviour agrees qualitatively with existing experiments on the breakup length of axisymmetric jets

    Are parent-reported outcomes for self-directed or telephone-assisted behavioral family intervention enhanced if parents are observed?

    Get PDF
    The study examined the effects of conducting observations as part of a broader assessment of families participating in behavior family intervention (BFI). It was designed to investigate whether the observations improve intervention outcomes. Families were randomly assigned to different levels of BFI or a waitlist control condition and subsequently randomly assigned to either observation or no-observation conditions. This study demonstrated significant intervention and observation effects. Mothers in more intensive BFI reported more improvement in their child’s behavior and their own parenting. Observed mothers reported lower intensity of child behavior problems and more effective parenting styles. There was also a trend for less anger among mothers who were observed and evidence of an observation-intervention interaction for parental anger, with observed mothers in more intensive intervention reporting less anger compared to those not observed. Implications for clinical and research intervention contexts are discussed

    Eliminating Ditransitives

    Get PDF
    Abstract. We discuss how higher arity verbs such as give or promise can be treated in an algebraic framework that admits only unary and binary relations and does not rely on event variables
    corecore