229 research outputs found
Predictive approach for simultaneous biosorption of hexavalent chromium and pentachlorophenol degradation by Bacillus cereus RMLAU1
Chromium and pentachlorophenol are the major environmental pollutants emanating from tannery effluent. Indigenous Bacillus cereus isolate was employed for biosorption and PCP degradation studies under varied environmental conditions such as pH, temperature, contact time, presence of other heavy metals, initial biosorbent and Cr6+ concentrations. Best results for Cr6+ biosorption (% removal) by living and dead biomass at 2.0 g l-1 were found to be 35.2 mg Cr g-1 dry wt (63%) at pH 5.0, and 42.5 mg Cr g-1 dry wt (70.5%) at pH 4.0, respectively at 35ºC (150 rpm) during 120 min at an initial concentration of 200 mg Cr6+ l-1 and 500 mg PCP l-1. Among various factors, pH had profound effect on Cr6+ biosorption and PCP degradation. Maximum 7.5 % (w/v) PCP degradation ensued in 2 h only by live cells in the presence of 0.4 % (w/v) cometabolite glucose. Presumably, this is the first report on simultaneous biosorption of chromium and pentachlorophenol remediation by native Bacillus cereus isolate from tannery effluent. Statistical regressional analysis suitably validated the experimental findings. This strain would be helpful in eco-friendly simultaneous bioremediation allied with a predictive computational approach.Key words: Bacillus cereus, Biosorption, Chromium, Heavy metals, Pentachlorophenol
An oxidant, detergent and salt stable alkaline protease from Bacillus cereus SIU1
A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was stable at pH 9.0 and 55°C. It was fully stable at 0.0 to 3.0% and moderately stable at 4.0 to 10.0% (w/v) NaCl concentrations. Whereas PMSF, EDTA and ascorbic acid were inhibitory, cysteine and β-mercaptoethanol enhanced protease activity. Calcium, magnesium, manganese and copper at 1 mM concentration increased the enzyme activity. Hydrogen peroxide, sodium perborate, sodium lauryl sulphate, Triton X100 and Tween 80 significantly increased the activity, while protease remained fairly stable (52 to 98%) at 0.1 and 1.0% concentrations of commercial detergents. The halotolerant thermoalkaline protease of B. cereus SIU1 was highly active and stable in the presence of several modulators, oxidants and detergents, revealing its possible use in several commercial and biological applications.Key words: Bacillus cereus SIU1, thermoalkaline protease, PMSF, EDTA, Hydrogen peroxide, Triton X100, Tween 80
Association of homocysteine and methylene tetrahydrofolate reductase (MTHFR C677T) gene polymorphism with coronary artery disease (CAD) in the population of North India
The implications of the methylene tetrahydrofolate reductase (MTHFR) gene and the level of homocysteine in the pathogenesis of coronary artery disease (CAD) have been extensively studied in various ethnic groups. Our aim was to discover the association of MTHFR (C677T) polymorphism and homocysteine level with CAD in north Indian subjects. The study group consisted of 329 angiographically proven CAD patients, and 331 age and sex matched healthy individuals as controls. MTHFR (C677T) gene polymorphism was detected based on the polymerase chain reaction and restriction digestion with HinfI. Total homocysteine plasma concentration was measured using immunoassay. T allele frequency was found to be significantly higher in patients than in the control group. We found significantly elevated levels of mean homocysteine in the patient group when compared to the control group (p = 0.00). Traditional risk factors such as diabetes, hypertension, smoking habits, a positive family history and lipid profiles (triglyceride, total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol), were found significantly associated through univariate analysis. Furthermore, multivariable logistics regression analysis revealed that CAD is significantly and variably associated with diabetes, hypertension, smoking, triglycerides and HDL-cholesterol. Our findings showed that MTHFR C677T polymorphism and homocysteine levels were associated with coronary artery disease in the selected population
Antimalarial Iron Chelator, FBS0701, Shows Asexual and Gametocyte Plasmodium falciparum Activity and Single Oral Dose Cure in a Murine Malaria Model
Iron chelators for the treatment of malaria have proven therapeutic activity in vitro and in vivo in both humans and mice, but their clinical use is limited by the unsuitable absorption and pharmacokinetic properties of the few available iron chelators. FBS0701, (S)3”-(HO)-desazadesferrithiocin-polyether [DADFT-PE], is an oral iron chelator currently in Phase 2 human studies for the treatment of transfusional iron overload. The drug has very favorable absorption and pharmacokinetic properties allowing for once-daily use to deplete circulating free iron with human plasma concentrations in the high µM range. Here we show that FBS0701 has inhibition concentration 50% (IC50) of 6 µM for Plasmodium falciparum in contrast to the IC50 for deferiprone and deferoxamine at 15 and 30 µM respectively. In combination, FBS0701 interfered with artemisinin parasite inhibition and was additive with chloroquine or quinine parasite inhibition. FBS0701 killed early stage P. falciparum gametocytes. In the P. berghei Thompson suppression test, a single dose of 100 mg/kg reduced day three parasitemia and prolonged survival, but did not cure mice. Treatment with a single oral dose of 100 mg/kg one day after infection with 10 million lethal P. yoelii 17XL cured all the mice. Pretreatment of mice with a single oral dose of FBS0701 seven days or one day before resulted in the cure of some mice. Plasma exposures and other pharmacokinetics parameters in mice of the 100 mg/kg dose are similar to a 3 mg/kg dose in humans. In conclusion, FBS0701 demonstrates a single oral dose cure of the lethal P. yoelii model. Significantly, this effect persists after the chelator has cleared from plasma. FBS0701 was demonstrated to remove labile iron from erythrocytes as well as enter erythrocytes to chelate iron. FBS0701 may find clinically utility as monotherapy, a malarial prophylactic or, more likely, in combination with other antimalarials
The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria
The clinical manifestations of cerebral malaria (CM) are well correlated with underlying major pathophysiological events occurring during an acute malaria infection, the most important of which, is the adherence of parasitized erythrocytes to endothelial cells ultimately leading to sequestration and obstruction of brain capillaries. The consequent reduction in blood flow, leads to cerebral hypoxia, localized inflammation and release of neurotoxic molecules and inflammatory cytokines by the endothelium. The pharmacological regulation of these immunopathological processes by immunomodulatory molecules may potentially benefit the management of this severe complication. Adjunctive therapy of CM patients with an appropriate immunomodulatory compound possessing even moderate anti-malarial activity with the capacity to down regulate excess production of proinflammatory cytokines and expression of adhesion molecules, could potentially reverse cytoadherence, improve survival and prevent neurological sequelae. Current major drug discovery programmes are mainly focused on novel parasite targets and mechanisms of action. However, the discovery of compounds targeting the host remains a largely unexplored but attractive area of drug discovery research for the treatment of CM. This review discusses the properties of the plant immune-modifier curcumin and its potential as an adjunctive therapy for the management of this complication
Metabolic Regulation in Progression to Autoimmune Diabetes
Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede β-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
- …