713 research outputs found

    On the Public Provision of the Performing Arts

    Get PDF
    In this paper, we present a model in which the performing arts are modelled as congestible public goods. In accordance with empirical evidence, the production of seat capacity is assumed to be subject to fixed costs. We estimate the parameters of the model?s demand and cost functions using German data. Using these estimates in a subsequent social choice analysis, we show that the current situation in the German performing arts sector is best described by a directorship that under the influence of a selfish theater lobby maximizes only the welfare of the spectators. Such an equilibrium, characterized by too low ticket prices and too large capacity, is most likely to establish if citizens have a very positive ex ante notion of the performing arts. --Performing Arts,Public Facilities,Congestion

    ĐĄŃ‚Đ°Đ±ĐžĐ»ĐžĐ·Đ°Ń†ĐžŃ ĐžĐ·Đ»ŃƒŃ‡Đ”ĐœĐžŃ Đ±Đ”Ń‚Đ°Ń‚Ń€ĐŸĐœĐ°

    Get PDF

    Acute Administration of Non-Classical Estrogen Receptor Agonists Attenuates Ischemia-Induced Hippocampal Neuron Loss in Middle-Aged Female Rats

    Get PDF
    Pretreatment with 17beta-estradiol (E2) is profoundly neuroprotective in young animals subjected to focal and global ischemia. However, whether E2 retains its neuroprotective efficacy in aging animals, especially when administered after brain insult, is largely unknown.We examined the neuroprotective effects of E2 and two agonists that bind to non-classical estrogen receptors, G1 and STX, when administered after ischemia in middle-aged rats after prolonged ovarian hormone withdrawal. Eight weeks after ovariectomy, middle-aged female rats underwent 10 minutes of global ischemia by four vessel occlusion. Immediately after reperfusion, animals received a single infusion of either E2 (2.25 microg), G1 (50 microg) or STX (50 microg) into the lateral ventricle (ICV) or a single systemic injection of E2 (100 microg/kg). Surviving pyramidal neurons in the hippocampal CA1 were quantified 1 week later. E2 and both agonists that target non-classical estrogen receptors (G1 and STX) administered ICV at the time of reperfusion provided significant levels of neuroprotection, with 55-60% of CA1 neurons surviving vs 15% survival in controls. A single systemic injection of a pharmacological dose of E2 also rescued approximately 50% of CA1 pyramidal neurons destined to die. To determine if E2 and G1 have similar mechanisms of action in hippocampal neurons, we compared the ability of E2 and G1 to modify CA1 pyramidal neuron responses to excitatory inputs from the Schaffer collaterals recorded in hippocampal slices derived from female rats not subjected to global ischemia. E2 and G1 (10 nM) significantly potentiated pyramidal neuron responses to excitatory inputs when applied to hippocampal slices.These findings suggest (1) that middle-aged female rats retain their responsiveness to E2 even after a long period of hormone withdrawal, (2) that non-classical estrogen receptors may mediate the neuroprotective actions of E2 when given after ischemia, and (3) that the neuroprotective efficacy of estrogens may be related to their modulation of synaptic activity in hippocampal slices

    Glutaredoxin GRXS17 associates with the cytosolic iron-sulfur cluster assembly pathway

    Get PDF
    Cytosolic monothiol glutaredoxins (GRXs) are required in iron-sulfur (Fe-S) cluster delivery and iron sensing in yeast and mammals. In plants, it is unclear whether they have similar functions. Arabidopsis (Arabidopsis thaliana) has a sole class II cytosolic monothiol GRX encoded by GRXS17. Here, we used tandem affinity purification to establish that Arabidopsis GRXS17 associates with most known cytosolic Fe-S assembly (CIA) components. Similar to mutant plants with defective CIA components, grxs17 loss-of-function mutants showed some degree of hypersensitivity to DNA damage and elevated expression of DNA damage marker genes. We also found that several putative Fe-S client proteins directly bind to GRXS17, such as XANTHINE DEHYDROGENASE1 (XDH1), involved in the purine salvage pathway, and CYTOSOLIC THIOURIDYLASE SUBUNIT1 and CYTOSOLIC THIOURIDYLASE SUBUNIT2, both essential for the 2-thiolation step of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNAs. Correspondingly, profiling of the grxs17-1 mutant pointed to a perturbed flux through the purine degradation pathway and revealed that it phenocopied mutants in the elongator subunit ELO3, essential for the mcm5 tRNA modification step, although we did not find XDH1 activity or tRNA thiolation to be markedly reduced in the grxs17-1 mutant. Taken together, our data suggest that plant cytosolic monothiol GRXs associate with the CIA complex, as in other eukaryotes, and contribute to, but are not essential for, the correct functioning of client Fe-S proteins in unchallenged conditions

    Laser module based on monolithically integrated MOPAs at 1.5 ”m for space-borne lidar applications

    Get PDF
    Space-borne lidar systems require laser transmitters with very good performance in terms of output power, beam quality, conversion efficiency, long term reliability and environmental compatibility. Atmospheric gas sensing additionally requires spectral purity and stability. Solid state lasers are considered the most mature technology for space lidar applications, at expenses of a relatively large size and low conversion efficiency [1]- [3]. Fiber lasers present very high power levels and very good beam quality, but they require specific attention due to their sensitivity to radiation. In this sense, progresses have been made to develop high power fiber amplifiers for different space applications [4]-[6]. Recently, a new generation of high brightness semiconductor lasers based on tapered geometry has demonstrated relatively high average power levels together with a good beam quality [7]-[10]. These devices are emerging candidates for its direct use in space lidar systems

    LASER INDUCED LAMB WAVE GENERATION FOR STRUCTURAL HEALTH MONITORING OF CARBON FIBER REINFORCED POLYMERS

    Get PDF
    ABSTRACT In this paper we present an innovative concept for the excitation of guided acoustic waves (lamb waves

    First Light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) Instrument

    Get PDF
    We present first light spectra from the new Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument. FIRST is a Fourier Transform Spectrometer developed to measure accurately the far-infrared (15 to 100 micrometers; 650 to 100 wavenumbers) emission spectrum of the Earth and its atmosphere. The observations presented here were obtained during a high altitude balloon flight from Ft. Sumner, New Mexico on 7 June 2005. The flight data demonstrate the instrument's ability to observe the entire energetically significant infrared emission spectrum (50 to 2000 wavenumbers) at high spectral and spatial resolution on a single focal plane in an instrument with one broad spectral bandpass beamsplitter. Comparisons with radiative transfer calculations demonstrate that FIRST accurately observes the very fine spectral structure in the far-infrared. Comparisons of the atmospheric window radiances measured by FIRST and by instruments on the NASA Aqua satellite that overflew FIRST are in excellent agreement. FIRST opens a new window on the spectrum that can be used for studying atmospheric radiation and climate, cirrus clouds, and water vapor in the upper troposphere

    The response of a classical Hodgkin–Huxley neuron to an inhibitory input pulse

    Get PDF
    A population of uncoupled neurons can often be brought close to synchrony by a single strong inhibitory input pulse affecting all neurons equally. This mechanism is thought to underlie some brain rhythms, in particular gamma frequency (30–80 Hz) oscillations in the hippocampus and neocortex. Here we show that synchronization by an inhibitory input pulse often fails for populations of classical Hodgkin–Huxley neurons. Our reasoning suggests that in general, synchronization by inhibitory input pulses can fail when the transition of the target neurons from rest to spiking involves a Hopf bifurcation, especially when inhibition is shunting, not hyperpolarizing. Surprisingly, synchronization is more likely to fail when the inhibitory pulse is stronger or longer-lasting. These findings have potential implications for the question which neurons participate in brain rhythms, in particular in gamma oscillations

    ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells

    Get PDF
    The low-density lipoprotein receptor (LDLR) doesn’t directly bind AP-1B; however, it relies on this clathrin adaptor for basolateral exocytosis. Identification of the autosomal recessive hypercholesterolemia protein (ARH) as a link between LDLR and AP-1B explains this apparent discrepancy and provides a model for how other endocytic proteins may contribute to endosomal recycling
    • 

    corecore