research

Laser module based on monolithically integrated MOPAs at 1.5 µm for space-borne lidar applications

Abstract

Space-borne lidar systems require laser transmitters with very good performance in terms of output power, beam quality, conversion efficiency, long term reliability and environmental compatibility. Atmospheric gas sensing additionally requires spectral purity and stability. Solid state lasers are considered the most mature technology for space lidar applications, at expenses of a relatively large size and low conversion efficiency [1]- [3]. Fiber lasers present very high power levels and very good beam quality, but they require specific attention due to their sensitivity to radiation. In this sense, progresses have been made to develop high power fiber amplifiers for different space applications [4]-[6]. Recently, a new generation of high brightness semiconductor lasers based on tapered geometry has demonstrated relatively high average power levels together with a good beam quality [7]-[10]. These devices are emerging candidates for its direct use in space lidar systems

    Similar works