27 research outputs found

    Study on the effect of processing methods on the total polyphenol, 2,3,5,4’-tetrahydroxystilben-2-O-β-D-glucoside, and physcion contents in Fallopia multiflora Thunb. Haraldson root

    Get PDF
    This study investigated the changes in the ingredients in Fallopia multiflora Thunb. Haraldson (FMT) root after processing it with different methods such as soaking, stewing, and steaming or combined methods. The total polyphenol, 2,3,5,4′-tetrahydroxystilben-2-O-β-D-glucoside (THSG), and physcion contents in FMT products after processing were determined using high-performance liquid chromatography (HPLC) and ultraviolet-visible (UV-VIS) methods. The results demonstrated that the processing method and time significantly affected the contents of polyphenol, THSG, and physcion. The physcion and total polyphenol content increased or decreased during processing depending upon the processing time, while the THSG content gradually decreased with an increase in the processing time. The content of physcion (a substance that can cause liver toxicity) was analysed, and the suitable conditions for processing of the FMT products were determined as initial soaking in rice swill for 24 h and subsequent stewing with black beans and water for 12 h

    Novel exopolysaccharide produced from fermented bamboo shoot-isolated Lactobacillus fermentum

    Get PDF
    This study aimed at providing a route towards the production of a novel exopolysaccharide (EPS) from fermented bamboo shoot-isolated Lactobacillus fermentum. A lactic acid bacteria strain, with high EPS production ability, was isolated from fermented bamboo shoots. This strain, R-49757, was identified in the BCCM/LMG Bacteria Collection, Ghent University, Belgium by the phenylalanyl-tRNA synthetase gene sequencing method, and it was named Lb. fermentum MC3. The molecular mass of the EPS measured via gel permeation chromatography was found to be 9.85 × 104 Da. Moreover, the monosaccharide composition in the EPS was analyzed by gas chromatography–mass spectrometry. Consequently, the EPS was discovered to be a heteropolysaccharide with the appearance of two main sugars—D-glucose and D-mannose—in the backbone. The results of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance spectroscopy analyses prove the repeating unit of this polysaccharide to be [→6)-β-D-Glcp-(1→3)-β-D-Manp-(1→6)-β-D-Glcp-(1→]n, which appears to be a new EPS. The obtained results open up an avenue for the production of novel EPSs for biomedical applications

    EVALUATION OF THE VULNERABILITY OF THE COASTAL SOCIO-NATURAL SYSTEMS (EXAMPLE FROM KHANH HOA COASTAL ZONE)

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    In-Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor

    Get PDF
    A triple electrode setup with a Pt pseudo-reference electrode integrated in a polydimethylsiloxane- (PDMS-) based microchamber was designed and fabricated. The integrated electrodes were deposited onto SiO2/Si substrate by sputtering. The PDMS microchamber was patterned using an SU-8 mold and sealed with electrodes in oxygen plasma. Polypyrrole nanowires (PPy NWs) were electrochemically grown in situ at an accurate position of the working electrode in the sealed microchamber instead of in an open system. The DNA probe sequences were simply introduced into the channel to form bonds with the nanowires. A detection limit of 20 pM was achieved using a lock-in amplifier. The electrochemical characteristics produced by the hybridization of DNA strands in the microchamber showed a good signal/noise ratio and high sensitivity. Measurement of the DNA sensor in narrow space also required much less volume of the analytical sample compared with that in an open measuring cell. Results showed that this simple system can potentially fabricate nanostructures and detect bio/chemical molecules in a sealed system

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke

    Biosynthesis and structural characterization of exopolysaccharide from Lactobacillus fermentum MC3

    Get PDF
    Strain Lactobacillus fermentum MC3 isolated from fermented bamboo shoots was used in this study. This isolate had a high exopolysaccharide (EPS) production capability. It was inoculated in the medium with a supplement of various concentrations of carbohydrate source (2, 3, 4, 5, and 6% (w/v)). The mixtures were then cultured under different conditions of initial cell density, temperatures, pH, and incubation time to identify the optimum param-eters for the EPS biosynthesis of this strain. The EPS yield was measured using the phenol-sulfuric acid method. The results showed that adding glucose, lactose, and sucrose to the cul-ture medium significantly increased the EPS production with a maximum amount of 4% of sugars. The yield was the highest for glucose at 178.207 mg/L, and the obtained figures for lactose and sucrose were 148.614 mg/L and 152.272 mg/L, respectively. The results indicated that the EPS production by L. fermentum MC3 reached the maximum values at 200.728 mg/L in the medium supplemented with 4% glucose at 40 °C, pH 6.0, and initial cell density of 106 CFU/mL for 48 h cultivation. By methylation and gas-chromatography mass spectrometry (GC-MS), it was found that the exopolysaccharide is composed of D-mannose, D-glucose, and D-galactose at the molar ratio of 1:0.74:0.09

    Graphene Oxide/Polyvinyl Alcohol/Fe3O4 Nanocomposite: An Efficient Adsorbent for Co(II) Ion Removal

    No full text
    In this work, an effective nanocomposite-based adsorbent directed to adsorb cobalt (Co2+) ion was successfully synthesized from graphene oxide (GO), polyvinyl alcohol (PVA), and magnetite (Fe3O4) nanoparticles via a coprecipitation technique. The synthesized GO/PVA/Fe3O4 nanocomposite was applied for Co2+ ion removal with the optimized working conditions including 100 min of contact time, 0.01 g of adsorbent dosage, pH of 5.2, and 50°C of temperature. The investigation of adsorption kinetics showed that the adsorption of Co2+ ion onto the GO/PVA/Fe3O4 nanocomposite followed the pseudo-second-order kinetic model with the rate constant k2 being 0.0026 (g mg−1·min−1). The Langmuir model is suitable to describe the adsorption of Co2+ ion onto the GO/PVA/Fe3O4 nanocomposite with the maximum sorption capacity (qmax) reaching 373.37 mg·g−1. The obtained results also indicated that the GO/PVA/Fe3O4 nanocomposite can adsorb/regenerate for at least 5 cycles with a little reduction in removal efficiency. Therefore, we believe that the GO/PVA/Fe3O4 nanocomposite could be used as a potential adsorbent for heavy metal treatment in terms of high adsorption capacity, fast adsorption rate, and recyclability

    Metal-Organic Framework MIL-53(Fe): Synthesis, Electrochemical Characterization, and Application in Development of a Novel and Sensitive Electrochemical Sensor for Detection of Cadmium Ions in Aqueous Solutions

    No full text
    A metal-organic framework MIL-53(Fe) was successfully synthesized by a simple hydrothermal method. A synthesized MIL-53(Fe) sample was characterized, and results indicated that the formed MIL-53(Fe) was a single phase with small particle size of 0.8 μm and homogeneous particle size distribution was obtained. The synthesized MIL-53(Fe) has been used to modify a glassy carbon electrode (GCE) by a drop-casting technique. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements of the MIL-53(Fe)-modified GCE showed that the MIL-53(Fe) was successfully immobilized onto the GCE electrode surface and the electrochemical behavior of the GCE/MIL-53(Fe) electrode was stable. In addition, several electrochemical parameters of MIL-53(Fe)-modified GCE (GCE/MIL-53(Fe)) including the heterogeneous standard rate constant (k0) and the electrochemically effective surface area (A) were calculated. Obtained results demonstrated that the synthesized MIL-53(Fe) with the small particle size, highly homogeneous particle size, and high electrochemically effective surface area was able to significantly enhance the electrochemical response signal of the working electrode. Therefore, the GCE/MIL-53(Fe) electrode has been used as a highly sensitive electrochemical sensor for cadmium ion (Cd(II)) monitoring in aqueous solution using differential pulse voltammetry (DPV) technique. The response signal of the electrochemical sensor increased linearly in the Cd(II) ion concentration range from 150 nM to 450 nM with the limit of detection (LOD) of 16 nM

    Mining-induced Land Subsidence Detected by Sentinel-1 SAR Images:An Example from the Historical Tadeusz Kościuszko Salt Mine at Wapno, Greater Poland Voivodeship, Poland

    No full text
    There are many mines in Poland that have been in operation for over 100 years, with the Tadeusz Kościuszko mine being a large salt mine in Wapno, northern Poland. The mine was closed in 1977 due to the greatest catastrophe in the history of Polish mining, but in the first days of 2021, a very large hole has been created in this area due to land subsidence. This article uses InSAR technology with Sentinel-1 images to determine settlement and ongoing deformation in this mine. The study results are useful for policymakers, managers, and authorities because land subsidence has caused serious and dangerous effects on people living in the area. The results processed by the Persistent Scatterer InSAR (PSInSAR) method with the Sentinel Application Platform and the Stanford Method for Persistent Scatterers software packages show that deformation in the Wapno village area has been detected in both residential and non-residential areas, with maximum subsidence of up to −19 mm/yr. The subsidence in the mine reaches −12 mm/yr, and that at surrounding area range from 0 to −18.8 mm/yr

    Optimization of mycelial growth and cultivation of wild <i>Ganoderma sinense</i>

    No full text
    Ganoderma sinense, a well-known medicinal macrofungus of Basidiomycetes, is widely used in traditional medicine for promoting health and longevity in East Asia. The fruiting bodies of G. sinense contain polysaccharides, ergosterol, and coumarin, which have antitumor, antioxidant, and anticytopenia activities. Mushroom cultivation requires suitable conditions for the formation of fruiting bodies and yield. However, little is known about the optimal culture conditions for mycelial growth and cultivation of G. sinense. In this study, the successful cultivation of a G. sinense strain collected from the wild was reported. The optimal culture conditions were identified by examining one factor at a time. The results of this study revealed that the nutritional requirements for the optimal mycelial growth of G. sinense were fructose (15 g/l) as the carbon source and yeast extract (1 g/l) as the nitrogen source. The optimal pH and temperature for G. sinense were 7 and 25–30EC, respectively. The mycelia grew fastest in treatment II (69% rice grains + 30% sawdust + 1% calcium carbonate). G. sinense produced fruiting bodies under all tested conditions and showed the highest biological efficiency (2.95%) in treatment B (96% sawdust, 1% wheat bran, 1% lime). In summary, under optimal culture conditions, G. sinense strain GA21 showed satisfactory yield and a high potential for commercial cultivation
    corecore