26 research outputs found

    Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration

    Get PDF
    To evaluate the associations of emergent genome-wide-association study-derived coronary heart disease (CHD)-associated single nucleotide polymorphisms (SNPs) with established and emerging risk factors, and the association of genome-wide-association study-derived lipid-associated SNPs with other risk factors and CHD events

    Long- and short-term outcomes in renal allografts with deceased donors: A large recipient and donor genome-wide association study.

    Get PDF
    Improvements in immunosuppression have modified short-term survival of deceased-donor allografts, but not their rate of long-term failure. Mismatches between donor and recipient HLA play an important role in the acute and chronic allogeneic immune response against the graft. Perfect matching at clinically relevant HLA loci does not obviate the need for immunosuppression, suggesting that additional genetic variation plays a critical role in both short- and long-term graft outcomes. By combining patient data and samples from supranational cohorts across the United Kingdom and European Union, we performed the first large-scale genome-wide association study analyzing both donor and recipient DNA in 2094 complete renal transplant-pairs with replication in 5866 complete pairs. We studied deceased-donor grafts allocated on the basis of preferential HLA matching, which provided some control for HLA genetic effects. No strong donor or recipient genetic effects contributing to long- or short-term allograft survival were found outside the HLA region. We discuss the implications for future research and clinical application

    Single marker association analysis for unrelated samples

    No full text
    10.1007/978-1-61779-555-8_18Methods in Molecular Biology850347-35

    What role for genetics in the prediction of multiple sclerosis?

    Get PDF
    For most of us, the foundations of our understanding of genetics were laid by considering Mendelian diseases in which familial recurrence risks are high, and mutant alleles are both necessary and sufficient. One consequence of this deterministic teaching is that our conceptualization of genetics tends to be dominated by the notion that the genetic aspects of disease are caused by rare alleles exerting large effects. Unfortunately, the preconceptions that flow from this training are frequently erroneous and misleading in the context of common traits, where familial recurrence risks are modest, and for the most part the relevant alleles are neither rare, necessary, nor sufficient. For these common traits, the genetic architecture is far more complex, with susceptibility rather than causality resulting from the combined effects of many alleles, each exerting only a modest effect on risk. None of these alleles is sufficient to cause disease on its own, and none is essential for the development of disease. Furthermore, most are carried by large sections of the population, the vast majority of which does not develop the disease. One consequence of our innate belief in the Mendelian paradigm is that we have an inherent expectation that knowledge about the genetic basis for a disease should allow genetic testing and thereby accurate risk prediction. There is an inevitable feeling that the same should be true in complex disease, but is it

    Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC

    No full text
    The Schizophrenia Psychiatric Genome-Wide Association Study Consortium (PGC) highlighted 81 single-nucleotide polymorphisms (SNPs) with moderate evidence for association to schizophrenia. After follow-up in independent samples, seven loci attained genome-wide significance (GWS), but multi-locus tests suggested some SNPs that did not do so represented true associations. We tested 78 of the 81 SNPs in 2640 individuals with a clinical diagnosis of schizophrenia attending a clozapine clinic (CLOZUK), 2504 cases with a research diagnosis of bipolar disorder, and 2878 controls. In CLOZUK, we obtained significant replication to the PGC-associated allele for no fewer than 37 (47%) of the SNPs, including many prior GWS major histocompatibility complex (MHC) SNPs as well as 3/6 non-MHC SNPs for which we had data that were reported as GWS by the PGC. After combining the new schizophrenia data with those of the PGC, variants at three loci (ITIH3/4, CACNA1C and SDCCAG8) that had not previously been GWS in schizophrenia attained that level of support. In bipolar disorder, we also obtained significant evidence for association for 21% of the alleles that had been associated with schizophrenia in the PGC. Our study independently confirms association to three loci previously reported to be GWS in schizophrenia, and identifies the first GWS evidence in schizophrenia for a further three loci. Given the number of independent replications and the power of our sample, we estimate 98% (confidence interval (CI) 78–100%) of the original set of 78 SNPs represent true associations. We also provide strong evidence for overlap in genetic risk between schizophrenia and bipolar disorder
    corecore