27 research outputs found

    Impact of the free-pelvis innovation in very rigid braces for adolescents with idiopathic scoliosis: short-term results of a matched case-control study

    Get PDF
    We introduced pelvis semi-rigid material (ethylene vinyl acetate) (Free-Pelvis) to improve the comfort and adaptability of very rigid braces (VRBs) for adolescents with idiopathic scoliosis (AIS), but this can also negatively impact the corrective forces on the trunk. Study Design: This was a matched retrospective cohort study. The inclusion criteria were AIS, age 10–16, VRB 23 h/day, x-rays available, primary curve 36°–65°, and angle of trunk rotation 7–23°. The cases were Sforzesco VRB with Free-Pelvis (FPB). The controls included classical Sforzesco VRB matched for Risser (range 0/4), menarche age (10/15), weight (33.5/83 kg), height (140/180 cm), BMI (13.5/29 kg/sqm), aesthetics (TRACE 4/12), plumbline distances (S1: −60/35; C7+L3: −10/115 mm), and referred brace use (22/24 h/day). Statistics: predictors of the results have been tested with linear and logistic regression according to the outcome variable type. We performed logistic regression for improved vs. worsened. The explanatory variable was brace type. We included 777 VRB and 25 FPB, age 13 ± 1, 47° ± 8° Cobb, and 11% men. The few baseline statistical differences were not clinically relevant. We achieved in-brace corrections of 15.2° ± 7.7° and 17.4° ± 6.5° for VRB and FPB, respectively (p = 0.21); out-of-brace corrections at 5 ± 2 months were 7.8° ± 0.2° for VRB and 8.1° ± 1.3° for FPB (p = 0.83). The type of brace did not influence the Cobb angle at either time interval or affect the odds of im-provement. Free-Pelvis innovation, introduced to improve comfort and adaptability, does not change the in-brace or short-term results of classical VRB and consequently can be safely applied

    Thermal characterization of intumescent fire retardant paints

    Get PDF
    Intumescent coatings are now the dominant passive fire protection materials used in industrial and commercial buildings. The coatings, which usually are composed of inorganic components contained in a polymer matrix, are inert at low temperatures and at higher temperatures, they expand and degrade to provide a charred layer of low conductivity materials. The charred layer, which acts as thermal barrier, will prevent heat transfer to underlying substrate. The thermal properties of intumescent paints are often unknown and difficult to be estimated since they vary significantly during the expansion process; for this reason the fire resistance validation of a commercial coatings is based on expensive, large-scale methods where each commercial coating-beam configuration has to be tested one by one. Adopting, instead, approaches based on a thermal modelling of the intumescent paint coating could provide an helpful tool to make easier the test procedure and to support the design of fire resistant structures as well. The present investigation is focused on the assessment of a methodology intended to the restoration of the equivalent thermal conductivity of the intumescent layer produced under the action of a cone calorimetric apparatus. The estimation procedure is based on the inverse heat conduction problem approach, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. The results point out that the equivalent thermal conductivity reached by the intumescent material at the end of the expansion process significantly depends on the temperature while the initial thickness of the paint does not seem to have much effect

    thermal characterization of intumescent fire retardant paints

    Get PDF
    Intumescent coatings are now the dominant passive fire protection materials used in industrial and commercial buildings. The coatings, which usually are composed of inorganic components contained in a polymer matrix, are inert at low temperatures and at higher temperatures, they expand and degrade to provide a charred layer of low conductivity materials. The charred layer, which acts as thermal barrier, will prevent heat transfer to underlying substrate. The thermal properties of intumescent paints are often unknown and difficult to be estimated since they vary significantly during the expansion process; for this reason the fire resistance validation of a commercial coatings is based on expensive, large-scale methods where each commercial coating-beam configuration has to be tested one by one. Adopting, instead, approaches based on a thermal modelling of the intumescent paint coating could provide an helpful tool to make easier the test procedure and to support the design of fire resistant structures as well. The present investigation is focused on the assessment of a methodology intended to the restoration of the equivalent thermal conductivity of the intumescent layer produced under the action of a cone calorimetric apparatus. The estimation procedure is based on the inverse heat conduction problem approach, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. The results point out that the equivalent thermal conductivity reached by the intumescent material at the end of the expansion process significantly depends on the temperature while the initial thickness of the paint does not seem to have much effect

    Brace technology thematic series - The Sforzesco and Sibilla braces, and the SPoRT (Symmetric, Patient oriented, Rigid, Three-dimensional, active) concept

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bracing is an effective strategy for scoliosis treatment, but there is no consensus on the best type of brace, nor on the way in which it should act on the spine to achieve good correction. The aim of this paper is to present the family of SPoRT (Symmetric, Patient-oriented, Rigid, Three-dimensional, active) braces: Sforzesco (the first introduced), Sibilla and Lapadula.</p> <p>Methods</p> <p>The Sforzesco brace was developed following specific principles of correction. Due to its overall symmetry, the brace provides space over pathological depressions and pushes over elevations. Correction is reached through construction of the envelope, pushes, escapes, stops, and drivers. The real novelty is the drivers, introduced for the first time with the Sforzesco brace; they allow to achieve the main action of the brace: a three-dimensional elongation pushing the spine in a down-up direction.</p> <p>Brace prescription is made plane by plane: frontal (on the "slopes", another novelty of this concept, i.e. the laterally flexed sections of the spine), horizontal, and sagittal. The brace is built modelling the trunk shape obtained either by a plaster cast mould or by CAD-CAM construction. Brace checking is essential, since SPoRT braces are adjustable and customisable according to each individual curve pattern.</p> <p>Treatment time and duration is individually tailored (18-23 hours per day until Risser 3, then gradual reduction). SEAS (Scientific Exercises Approach to Scoliosis) exercises are a key factor to achieve success.</p> <p>Results</p> <p>The Sforzesco brace has shown to be more effective than the Lyon brace (matched case/control), equally effective as the Risser plaster cast (prospective cohort with retrospective controls), more effective than the Risser cast + Lyon brace in treating curves over 45 degrees Cobb (prospective cohort), and is able to improve aesthetic appearance (prospective cohort).</p> <p>Conclusions</p> <p>The SPoRT concept of bracing (three-dimensional elongation pushing in a down-up direction) is different from the other corrective systems: 3-point, traction, postural, and movement-based. The Sforzesco brace, being comparable to casting, may be the best brace for the worst cases.</p

    Team care to cure adolescents with braces (avoiding low quality of life, pain and bad compliance): a case-control retrospective study. 2011 SOSORT Award winner.

    Get PDF
    ABSTRACT:Bracing could be efficacious, given good compliance and quality of braces. Recently the SOSORT Brace Treatment Management Guidelines (SBTMG) have highlighted the perceived importance of the professional teams surrounding braced patients.To verify the impact of a complete rehabilitation team in the adolescent patient with bracing.Design. Initial cross-sectional study, followed by a retrospective case-control study. Population: Thirty-eight patients (15.8 ± 1.6 years; 26 females; 10 hyperkyphosis, 28 scoliosis of 29.2 ± 7.9° Cobb) extracted from a single orthotist database (between January 1, 2008 and September 1, 2009) and treated by the same physician; brace wearing at least 15 hours/day for a minimum of 6 months; age 10 or more. Treatment: Braces: Sforzesco, Sibilla, Lapadula or Maguelone. Exercises: SEAS. Methods: Two questionnaires filled in blindly by patients: SRS-22 and one especially developed and validated with 25 questions on adherence to treatment. Groups (main risk factor): TEAM (private institute: satisfied 44/44 SOSORT criteria; grade of teamwork, "excellent") included 13 patients and NOT 25 (National Health Service Rehabilitation Department: 35/44 SOSORT criteria respected; grade, "insufficient").TEAM was more compliant to bracing than NOT (97 ± 6\% vs. 80 ± 24\%) and performed nearly double the exercises (38 ± 12 vs. 20 ± 13 minutes/session). The self-reduction of bracing was significant in NOT (from 16.8 ± 3.7 to 14.8 ± 4.9 hours/day, , P<0.05); TEAM showed a significant reduction in the difficulties due to bracing (from 8.9 ± 1.4 to 3.5 ± 2.0 in 12 months on a 10-point scale, P<0.05). Pain was perceived by 55\% of NOT versus 7\% of TEAM (P < 0.05). The populations did not differ at the baseline studied outcomes. The absence of a good team surrounding the patient increases by five times the risk of reduced compliance to bracing (odds ratio OR 5.5 - 95\% confidence interval 95CI 3.6-7.4), along with more than 15 times that of QoL problems (OR 15.7 - 95CI 13.6-17.9) and pain (OR 16.8 - 95CI 14.5-19.1).Provided the limits of this first study on the topic, the SBTMG seems to be important for brace treatment, influencing pain, QoL and compliance (and so, presumably, final results). Future studies on the topic are advisable
    corecore