17 research outputs found

    A System Dynamics Model of the Air Transport System

    Get PDF
    In this report, we give a complete algebraic description of a system dynamics model of the air transport system, developed to assess the impact of different policies on the adoption rate of fully electric aircraft until the year 2050. Our model consists of the interaction between three major segments, namely air travel demand, airline industry and aircraft manufacturers. This model was used in the paper “How much can electric aircraft contribute to reaching the Flightpath 2050 CO2 emissions goal? A system dynamics approach for European short haul flights” for the computational results therein

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A system dynamics air transport system simulation model to test transition pathways

    No full text
    This collection contains a system dynamics model of the air transport system (ATS), developed to assess the different aviation environmental emission reduction strategies using the adoption of hydrogen-electric, hydrogen combustion and SAF. The model consists of the interaction between four major segments, namely air travel demand, airline industry, fuel producers and aircraft manufacturers. The provided files can be executed using the software Vensim. Furthermore, two data sets as an Excel file, containing a collection of initial values, parameters, exogenous variables and variables used to calibrate the ATS model are given

    A System Dynamics Model of the Air Transport System

    No full text
    This collection contains a system dynamics model of the air transport system (ATS), developed to assess the impact of different policies on the adoption rate of fully electric aircraft until the year 2050. The model consists of the interaction between three major segments, namely air travel demand, airline industry and aircraft manufacturers. The provided files can be executed using the software Vensim. Furthermore, a data set as an excel file, containing a collection of initial values, parameters, exogenous variables and variables used to calibrate the ATS model is given

    Efficacy of stem cell in improvement of left ventricular function in acute myocardial infarction - MI3 Trial

    Get PDF
    Background and objectives: Acute myocardial infarction (AMI) is characterized by irreparable and irreversible loss of cardiac myocytes. Despite major advances in the management of AMI, a large number of patients are left with reduced left ventricular ejection fraction (LVEF), which is a major determinant of short and long term morbidity and mortality. A review of 33 randomized control trials has shown varying improvement in left ventricular (LV) function in patients receiving stem cells compared to standard medical therapy. Most trials had small sample size and were underpowered. This phase III prospective, open labelled, randomized multicenteric trial was undertaken to evaluate the efficacy in improving the LVEF over a period of six months, after injecting a predefined dose of 5-10 Χ 10 [8] autologous mononuclear cells (MNC) by intra-coronary route, in patients, one to three weeks post ST elevation AMI, in addition to the standard medical therapy. Methods: In this phase III prospective, multicentric trial 250 patients with AMI were included and randomized into stem cell therapy (SCT) and non SCT groups. All patients were followed up for six months. Patients with AMI having left ventricular ejection fraction (LVEF) of 20-50 per cent were included and were randomized to receive intracoronary stem cell infusion after successfully completing percutaneous coronary intervention (PCI). Results: On intention-to-treat analysis the infusion of MNCs had no positive impact on LVEF improvement of ≥ 5 per cent. The improvement in LVEF after six months was 5.17 ± 8.90 per cent in non SCT group and 4.82 ± 10.32 per cent in SCT group. The adverse effects were comparable in both the groups. On post hoc analysis it was noted that the cell dose had a positive impact when infused in the dose of ≥ 5 X 10 [8] (n=71). This benefit was noted upto three weeks post AMI. There were 38 trial deviates in the SCT group which was a limitation of the study. Interpretation and conclusions:Infusion of stem cells was found to have no benefit in ST elevation AMI. However, the procedure was safe. A possible benefit was seen when the predefined cell dose was administered which was noted upto three weeks post AMI, but this was not significant and needs confirmation by larger trials

    Elective surgical services need to start planning for summer pressures

    No full text
    corecore