6 research outputs found

    Multi-scale mosaics in top-down pest control by ants from natural coffee forests to plantations

    Get PDF
    While top-down control plays an important role in shaping both natural and agricultural food webs, we lack insights into how top-down control effects vary across spatial scales. We used a multi-scale survey of top-down control of coffee pests and diseases by arboreal ants to examine if colony location creates a small-scale mosaic in top-down control around trees and if the strength of that control varies between sites at the landscape scale. We investigated pest and disease levels on coffee shrubs at different distances from shade trees with and without a Crematogaster spp. ant colony in 59 sites along a coffee management intensity gradient in southwestern Ethiopia. Within sites, ants significantly suppressed herbivory and coffee leaf rust at distances less than 10 m from nesting trees. Top-down control varied between sites, with stronger top-down control of free-feeding herbivory near ant colonies at sites with lower management intensity and stronger top-down control of a skeletonizer at sites with higher canopy cover. We conclude that the strength of top-down control by ants is highly heterogeneous across spatial scales, as a consequence of the biology of the predator at the small scale and herbivore density or changes in herbivore-ant interactions at the landscape scale

    Search for top-down and bottom-up drivers of latitudinal trends in insect herbivory in oak trees in Europe

    Get PDF
    AimThe strength of species interactions is traditionally expected to increase toward the Equator. However, recent studies have reported opposite or inconsistent latitudinal trends in the bottom‐up (plant quality) and top‐down (natural enemies) forces driving herbivory. In addition, these forces have rarely been studied together thus limiting previous attempts to understand the effect of large‐scale climatic gradients on herbivory.LocationEurope.Time period2018–2019.Major taxa studiedQuercus robur.MethodsWe simultaneously tested for latitudinal variation in plant–herbivore–natural enemy interactions. We further investigated the underlying climatic factors associated with variation in herbivory, leaf chemistry and attack rates in Quercus robur across its complete latitudinal range in Europe. We quantified insect leaf damage and the incidence of specialist herbivores as well as leaf chemistry and bird attack rates on dummy caterpillars on 261 oak trees.ResultsClimatic factors rather than latitude per se were the best predictors of the large‐scale (geographical) variation in the incidence of gall‐inducers and leaf‐miners as well as in leaf nutritional content. However, leaf damage, plant chemical defences (leaf phenolics) and bird attack rates were not influenced by climatic factors or latitude. The incidence of leaf‐miners increased with increasing concentrations of hydrolysable tannins, whereas the incidence of gall‐inducers increased with increasing leaf soluble sugar concentration and decreased with increasing leaf C : N ratios and lignins. However, leaf traits and bird attack rates did not vary with leaf damage.Main conclusionsThese findings help to refine our understanding of the bottom‐up and top‐down mechanisms driving geographical variation in plant–herbivore interactions, and indicate the need for further examination of the drivers of herbivory on trees.</p

    From leaf to continent: The multi-scale distribution of an invasive cryptic pathogen complex on oak

    Get PDF
    The spatial distribution and niche differentiation of three closely related species (Erysiphe alphitoides, Erysiphe quercicola and Erysiphe hypophylla) causing oak powdery mildew was studied at scales ranging from the European continent, where they are invasive, to a single leaf. While E. alphitoides was dominant at all scales, E. quercicola and E. hypophylla had restricted geographic, stand and leaf distributions. The large-scale distributions were likely explained by climatic factors and species environmental tolerances, with E. quercicola being more frequent in warmer climates and E. hypophylla in colder climates. The extensive sampling and molecular analyses revealed the cryptic invasion of E. quercicola in nine countries from which it had not previously been recorded. The presence of the three species was also strongly affected by host factors, such as oak species and developmental stage. Segregation patterns between Erysiphe species were observed at the leaf scale, between and within leaf surfaces, suggesting competitive effects

    Global urban environmental change drives adaptation in white clover

    No full text
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore