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Abstract 

The spatial distribution and niche differentiation of  three closely related species (Erysiphe 

alphitoides, E. quercicola and E. hypophylla) causing oak powdery mildew was studied at 

scales ranging from the European continent, where they are invasive, to a single leaf. While E. 

alphitoides was dominant at all scales, E. quercicola and E. hypophylla had restricted 

geographic, stand and leaf distributions. The large-scale distributions were likely explained by 

climatic factors and species environmental tolerances, with E. quercicola being more frequent 

in warmer climates and E. hypophylla  in colder climates. The extensive sampling and 

molecular analyses revealed the cryptic invasion of E. quercicola in nine countries from 

which it was not yet recorded. The presence of the three species was also strongly affected by 

host factors, such as oak species and developmental stage. Segregation patterns between 

Erysiphe species were finally observed at the leaf scale, between and within leaf surfaces, 

suggesting competitive effects.  

 

INTRODUCTION 

Fungi have been increasingly recognized as an important group among invasive species 

(Desprez-Loustau et al. 2007, van der Putten et al. 2007, Mallon et al. 2015, Dickie et al. 

2017), with some devastating consequences in the case of plant and animal pathogens (Fisher 

et al. 2012, Roy et al. 2017). Human-mediated transport has been identified as a major 

pathway for the introduction of non-native micro-organisms, e.g. forest pathogens (Liebhold 

et al. 2012). Microbial invasions are thus clear evidence that microbial cosmopolitanism (the 

absence of dispersal limitations) postulated in the "everything is everywhere" hypothesis is 

not the general rule (Green and Bohannan 2006, Martiny et al. 2006).  
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One acute problem in studying the spatial distribution of microbes, including fungi, which 

may explain apparent species cosmopolitanism, is the relatively low taxonomic resolution 

provided by morphological characters (Green and Bohannan 2006). For example, molecular 

analyses have shown that many 'morpho-species' of fungi hide a complex of genetically 

divergent species, called cryptic species, with follow-up studies providing evidence for some 

differentiation in their ecology and biogeography (Taylor et al. 2000). In particular, many 

plant diseases that were formerly believed to be caused by a single pathogen species were 

later shown to be due to a complex of multiple cryptic species (Fitt et al. 2006). For example, 

Eucalyptus leaf spot is associated with more than 60 species of Mycosphaerella (Crous and 

Groenewald 2005), and grapevine downy mildew is caused by five Plasmopara species in 

North America (Rouxel et al. 2013).   

The existence of cryptic species may have important implications in the context of invasions, 

notably by causing so-called cryptic invasions (Geller et al. 2010). Invasions may be 

unrecognized due to the morphological similarity between native and introduced species 

(Geller 1999). In the recent European ash dieback ,  it took years to identify the exotic origin 

of the fungal pathogen (Hymenoscyphus fraxineus), closely related to a native non-pathogenic 

species, impeding the implementation of quarantine measures (Gross et al. 2014). Moreover, 

some invasions regarded as caused by a single species may hide several invasion events of 

different species (Mackie et al. 2012). For example, fungal chytridiomycosis has been 

identified as one of the major drivers of the decline of amphibians worldwide and was initially 

thought to be caused by the single species Batrachochytrium dendrobatidis (Fisher et al. 

2009). However, a closely related species that preferentially infects salamanders has been 

recently detected and described (Martel et al. 2013). Cryptic species, although 

morphologically similar, often display some level of ecological divergence which could play a 

role in the invasion process. For example, differences in terms of environmental tolerance 
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may lead to some geographical segregation in introduced areas (Mackie et al. 2012). In the 

case of pathogens, as shown in the Batrachochytrium complex, adaptation to the plant or 

animal host is a major driver of ecological divergence and speciation (Le Gac et al. 2007, 

Giraud et al. 2010). Moreover, the ability to perform host shifts to non co-evolved hosts in the 

introduced area is a key process of pathogen invasions in wild communities (Woolhouse et al. 

2005, Slippers et al. 2005). Differences in levels of host specialization within a species 

complex may cause different invasion patterns between cryptic species (Saleh et al. 2012).  

Here we focus on oak powdery mildew, a foliar disease first recorded in the beginning of the 

20th century in Europe, causing seedling mortality and tree decline, especially in the two most 

common European oaks, Quercus robur and  Q. petraea  (Marçais and Desprez-Loustau 

2014). Recent molecular studies suggest a multiple invasion with three closely related fungal 

species in the Erysiphe genus putatively originating from Asia (Takamatsu et al. 2007, 

Mougou et al. 2008). The most common species, known as E. alphitoides, was described as a 

new species in 1912 (under the name of Microsphaera alphitoides) and regarded as the causal 

agent of the new invasion in Europe (Griffon and Maublanc 1912). The second species, E. 

hypophylla, tentatively identified from slightly different symptoms and morphology, was 

assumed to cause an independent invasion, starting a few decades later from northern Europe 

(Roll-Hansen 1961). The third species, E. quercicola, was first described in Asia (Limkaisang 

et al. 2006, Takamatsu et al. 2007) and recently detected in France (Mougou et al. 2008) and 

later Spain (Desprez-Loustau et al. 2017). Its date of introduction in Europe remains 

unknown.  

The overarching aim of this study is to understand the multi-scale spatial distribution of the 

cryptic species forming the invasive complex with the ultimate goal of understanding their 

invasive behaviour. Our working hypothesis is that species show some degree of niche 
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separation, which may translate into differences in their distribution across multiple spatial 

scales. More specifically, we address the following questions: 

 What is the spatial distribution of the three Erysiphe species, ranging from a large scale 

(i.e. the European continent) and local scale (i.e. stand level) to the micro-scale (i.e. leaf 

level)? At which spatial scales do the different species co-occur?  

 Do the fungal species differ in their biogeographical distribution at the continental scale 

due to differences in their climatic niche and their ability to attack different oak species? 

 At the stand scale, is the pathogen complex the same on trees of different developmental 

stages?  

 At the scale of single leaves, where direct and plant-mediated interactions between the 

pathogen species are expected to occur, do species segregate between and within leaf 

surfaces?   

 

MATERIAL AND METHODS 

Hierarchical sampling design 

To assess the multi-scale distribution of the powdery mildew species complex, we sampled 

more than seven hundred powdery mildew-infected oak trees from across Europe using a 

series of sampling strategies (see below). The focal oak species was Quercus robur, which 

has the widest geographic range and spans all over Europe (http://www.euforgen.org/species/) 

but other oak species were also sampled (see below). The infected leaves were pressed dry 

immediately after field collection, sent to the laboratory and maintained at room temperature 

until the molecular analyses were performed. Unless otherwise stated, 6 mm diameter leaf 

discs were taken with a cork borer in sporulating lesions visible on the upper (adaxial) 

surface. Tools were sterilized between taking each leaf disc.  
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European scale sampling 

The main sampling to assess the distribution of the cryptic powdery mildew species across 

Europe was completed during the growing seasons of 2014 - 2016 by collecting leaves from 

20-80 oak trees, from one or several locations in each of 15 European countries and Turkey. 

Additional data come from a previous sampling in France in 2007 (Mougou-Hamdane et al. 

2010) and from previous collections in various countries (see Leaf scale sampling). Most 

samples were collected on Q. robur, with some of them identified as "Q. robur or Q. 

petraea", since these two species are closely related and not easily distinguished. Other 

Quercus species with a more restricted range, especially Q. pyrenaica, Q. cerris, Q. 

vulcanica, Q. pubescens, and Q. frainetto, were sampled in a limited number of countries 

(Desprez-Loustau et al. 2018). Individual samples for molecular analysis consisted of one leaf 

disc cut from one leaf per tree.  

Stand scale sampling 

In order to investigate whether the powdery mildew community is similar in mature trees and 

in seedlings growing under their canopy, we first sampled four mature trees growing 

approximately 50 m apart in Le bois des Sources in Cestas, France (lat. 44.76°, long. -0.71°), 

a location where E. alphitoides and E. quercicola were previously known to occur (Hamelin 

et al. 2016). For each mature tree, eight leaves from each of four branches were collected at 

circa 4 m high in the canopy using a pole pruner, in June 2014. The presence of Erysiphe 

species in seedlings was studied for two out of the four mature trees by collecting one infected 

leaf from each of 15 seedlings growing under the canopy of the mature tree at the same date. 

In June 2015, we sampled again in the same location (Cestas) as well as in Laveyron (lat. 

43.76°, long. -0.22°), another naturally regenerating stand in southwestern France where E. 

alphitoides and E. quercicola were known to occur. Five trees were sampled in Cestas 
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(including the four sampled in 2014) and eleven in Laveyron, with five leaves sampled in the 

canopy of each mature tree and one leaf on each of five seedlings growing underneath each 

tree. Samples for molecular analyses consisted of one disc per leaf. 

Leaf scale sampling 

Three different samplings were performed at the leaf scale.  

First, because the three species may differ in the location and intensity of sporulation, we 

tested whether visual sampling may introduce a bias in the detection of species. For this, we 

compared targeted vs. non targeted sampling in infected leaves, i.e. one leaf disc cut in a 

visibly sporulating lesion on the upper leaf surface and a second, "non-targeted", leaf disc 

taken on the same leaf, at the symmetric position from the main leaf vein (i.e., irrespective of 

any visual selection of lesions). Leaves were taken from the four trees used for canopy 

sampling in 2014 (total number of samples: 128 leaves and 256 leaf discs). 

Second, differences in the occurrence of Erysiphe species between the upper and lower leaf 

sides were investigated on 74 samples collected from Armenia, Czech Republic, Germany, 

Iran, Israel, Lithuania, Slovakia, Switzerland, Hungary and the United Kingdom, as collected 

from 1969 to 2006. Mycelium and spores were scraped separately from lesions visible on 

lower (abaxial) or upper (adaxial) sides of leaves. If present, chasmothecia were also isolated 

separately for each leaf side. 

Third, the fine scale distribution of E. alphitoides and E. quercicola within leaves, and their 

possible co-occurrence, was studied on leaves taken from different seedlings in Cestas and 

Laveyron forests in June 2015. The seven analyzed leaves (four from Cestas and three from 

Laveyron) showed extensive mycelial development on the upper surface (and not on the lower 

surface) and were known to harbor both E. alphitoides and E. quercicola based on previous 

analyses. Intensive sampling of the whole infected leaf surface was performed by taking many 
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small leaf discs (4 mm in diameter). Taking leaf discs with a cork borer was preferred over 

cutting the leaf into quadrats in order to avoid cross contamination while cutting.  

 

Molecular identification 

Identification of Erysiphe species was based on polymorphisms in the ITS (Internal 

Transcribed Spacer) sequences of ribosomal DNA, the universal barcode for fungi (Schoch et 

al. 2012).  

In the case of leaf disc samples, total DNA was extracted from leaf samples using the Invisorb 

Spin Plant mini kit, according to manufacturer’s instructions (Stratec Molecular GmbH, 

Berlin). Amplification of the ITS1 region was performed using the ITS1-Fungi (Gardes and 

Bruns 1993) and o-micro-rev primers (Heuser and Zimmer 2002), as previously described 

(Desprez-Loustau et al. 2017). Overall, 94% of powdery mildew lesions produced the 

expected amplicon. Sequencing of the amplicon was done by Sanger technology (Genewiz, 

England). Sequences were aligned with BioEdit and Erysiphe species identified thanks to six 

fixed SNPs (Takamatsu et al. 2007,  Mougou et al. 2008). Bad quality sequences or those that 

could not be assigned to one of the Erysiphe species were discarded (less than 3%). 

In the case of leaf scrapings, DNA was extracted using the chelex method (Hirata and 

Takamatsu 1996). The rDNA ITS region including 5.8S rDNA was amplified by two 

sequential PCR reactions using partially nested primer sets according to the procedures of 

Takamatsu et al. (2008). The amplified ITS regions were digested with PvuII or Alw26 I 

(TaKaRa, Tokyo, Japan) according to the manufacturer’s recommendation. Digestion 

mixtures were prepared as 10 units of enzyme, 1.5 µl of enzyme buffer (supplied by the 

manufacturer), 7.5 µl of sterile distilled water and 5 µl of the PCR product per tube. 

Digestions were run for two hours at 37˚C. Restricted DNA was then analyzed on 2% agarose 

Kommentert [M1]: make a final check with table 
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gels in TBE buffer. Erysiphe species were identified according to band patterns. The ITS of E. 

quercicola is cleaved by neither of the two enzymes. The ITS of E. alphitoides is not cleaved 

by Alw26 I, but is split into two bands (ca 450 and 100 bp length) by PvuII treatment. The ITS 

of E. hypophylla is split into two bands (ca 450 and 100 bp length) by PvuII treatment and 

also generates c. 300 and 250 bp bands by Alw26 I. 

  

Climatic data 

Climatic data were retrieved for each sampling location from WorldClim (Fick and Hijmans 

2017) for the period 1970-2000, with a 2.5 minute resolution. Mean monthly temperature and 

rainfall were extracted and seasonal bioclimatic variables were computed by averaging 

temperature and summing rainfall for the spring (April to June), summer (July to September), 

autumn (October to December) and winter (January to March) over the 30-year period. 

 

Statistical analyses 

Statistical analyses were performed with the SAS 9.4 TS1M1 software (SAS Institute Inc., 

Cary, NC, USA). The probability of occurrence of the three Erysiphe species at the different 

spatial scales was studied by generalized linear models with binomial distribution and logit 

link. The effect of a set of predefined predictor variables on this probability was assessed by 

Wald Χ2 probabilities and odds ratio (OR) estimates. The OR quantifies the strength of the 

association between the dependent and independent variables, where OR>1 indicates a 

positive association and OR<1 indicates a negative association (Rita and Komonen 2008). 

Analyses were either performed at the level of the individual sample (i.e. the leaf discs) or by 

grouping samples as explained below. We used a scale parameter (estimated by the ratio of 
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Pearson Chi-2 to degrees of freedom) to model the overdispersion in the data along with an 

AIC corrected for overdispersed data, i.e. QAIC (Burnam and Anderson 2003). 

The analysis of the distribution of the three mildew species at the European scale (N = 689) 

was performed by pooling all samples within a country. To identify large scale geographic 

factors independently of host effects, only samples collected from Q. robur, Q. petraea and 

unidentified species within this complex were retained in the first statistical analysis (N = 

498). For each Erysiphe species, a first model was run with proportion of positive samples per 

country explained by latitude and longitude (averaged among samples within a country). In 

order to investigate potential climatic effects underlying the geographic effects, the model was 

then run with the seasonal climatic variables (averaged within a country over 1970-2000) as 

predictor variables. We thereby assumed that the probability of detecting a given species at 

the national scale was mainly related to the establishment of a population of this species, itself 

depending on the long-term average climate. Due to the strong correlations existing between 

climatic variables, we first considered models with only one climatic variable. To determine 

the most influential climatic variables, we ranked models according to QAIC differences 

between the simple regressions (with a single climatic predictor) and the corresponding 

intercept models (with the same value of scale parameter for each pair of models, thus 

enabling QAIC comparisons). In a second stage, we ran models with all combinations of one 

temperature variable and one precipitation variable. The impact of host species on the 

occurrence of each of the fungal species was investigated separately for the four countries 

where sufficient samples had been collected from multiple oak species (at least 13 samples 

per oak species), i.e. Austria and Germany for Q. robur and Q. petraea, and Spain and 

Portugal for Q. robur and Q. pyrenaica. For each fungal species, we modelled the presence-

absence on a single leaf disc cut from one leaf per tree as a function of the oak species. 
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At the stand scale, the proportion of positive samples for each Erysiphe species was computed 

for the 18 trees sampled over the two years and locations, separately for the canopy and the 

seedlings underneath the mature trees. We then modelled the proportion of leaves with each 

Erysiphe species as a function of tree developmental stage (mature vs. seedling), year (2014 

vs. 2015) and location (Cestas vs. Laveyron).  

Within leaves, the effect of targeted vs. non targeted sampling on detection of a given 

Erysiphe species was tested by modeling presence-absence as a function of sampling method 

for the 128 sampled leaves. To test for differences of occurrence of the fungal species on the 

two sides of a leaf, presence-absence of each species was modelled as a function of leaf side 

(upper vs. lower) for a total of 74 leaves.  

To investigate the potential (positive or negative) interactions between species (E. alphitoides 

and E. quercicola) within a single leaf, we used the checkerboard score (Cscore) as an indicator 

of species segregation, as proposed by Stone and Roberts (1990). A low Cscore indicates a high 

randomness, i.e. a greater likelihood that the distribution of one species has not been directly 

affected by the presence of the other species.  

First we calculated the Cscore from observed data: 

 
))(( EQEAEQEQEAEAscore NNNNC  

 

where NEA is the total number of leaf discs yielding E. alphitoides, NEQ is the total number of 

leaf discs yielding E. quercicola, NEA-EQ is the total number of leaf discs yielding both E. 

alphitoides and E. quercicola. The Cscore was calculated for each sampled site independently 

and by pooling all samples. 

Second we simulated the distribution of Cscore under the null hypothesis of randomness. Each 

Cscore was obtained by randomizing occurrences of E. alphitoides and E. quercicola among all 



15 
 

discs. To take into account potential differences in relative frequencies of Erysiphe species 

among sites (Cestas and Laveyron), the total number of each species occurrence was kept at 

the observed value in each site. This was repeated 1000 times.  

Third we performed a two-tailed test by comparing the observed Cscore to the lower 

(αlow=0.025) and higher (αhigh=0.975) critical values of the null distribution of Cscore. The null 

hypothesis was rejected if the observed Cscore was lower or higher than the corresponding 

critical values, indicating more or less frequent co-occurrence than predicted by chance, 

respectively. These analyses were implemented in R software v. 3.3.3 (R Core Team 2017). 

 

RESULTS 

European scale  

Clear geographical patterns emerged at the continental scale (Fig. 1). E. alphitoides was 

detected and was dominant in all European countries (Fig. 1). In contrast, the ranges of E. 

quercicola and E. hypophylla were more limited, with almost non-overlapping distribution 

areas. E. quercicola was mostly restricted to the southern part of Europe and particularly 

common in the Iberian peninsula. It was also detected at very high frequency in Turkey and 

southwestern Asia, and was the sole species in the few samples from Israel and Iran. E. 

hypophylla was most abundant in northern and central Europe, and almost absent from 

southwestern Europe, with the exception of a few leaves in Portugal and southern France. A 

significant proportion (22%) of samples (i.e. leaf discs) yielded mixtures of E. alphitoides 

with one of the two other species, whereas E. quercicola and E. hypophylla were only 

detected once on the same leaf (also with E. alphitoides).  
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Samples from Q. robur and/or Q. petraea covered a latitudinal gradient ranging from 40.29° 

to 66.02° and a longitudinal gradient ranging from -8.37° to 25.61°. While we did not detect 

any significant effect of latitude or longitude on the distribution of the three Erysiphe species, 

climatic variables were shown to have a significant effect on the presence of E. hypophylla 

and E. quercicola (Table S1). Temperature, especially in fall and winter, had the most 

significant and important effects but in opposite directions for the two species. Erysiphe 

hypophylla was more common in a cold climate (OR around 0.75), while the reverse was true 

for E. quercicola, with OR around 1.5, meaning that the odds of finding E. quercicola are 

increased by c. 50% for each additional degree in mean winter temperature (Fig. 2; Table S1). 

Among the precipitation variables, spring rainfall showed a significant effect, slightly 

negative for E. hypophylla and positive for E. quercicola. No better model with two variables 

was obtained for either species. 

The probability of finding E. alphitoides, E. hypophylla or E. quercicola differed among oak 

species in areas where several species were present (Fig. 3). In Germany and Austria, E. 

hypophylla was detected more frequently on Q. petraea than on Q. robur (ORs of 6.7 and 5.0 

in 66 and 46 samples, respectively; P = 0.005 and 0.16, respectively). In Spain and Portugal, 

E. quercicola was detected much more frequently on Q. pyrenaica than on Q. robur (ORs of 

6.3 and 9.6, in 51 and 85 samples, respectively; P = 0.03 and <0.0001, respectively). For E. 

alphitoides, a host effect could only be tested for Portugal, with lower odds for Q. pyrenaica 

than for Q. robur (OR = 0.05, P = 0.0004). 

 

Stand scale – Erysiphe species in the canopy of mature trees compared to seedlings growing 

under their canopies   
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In both sampling locations in southwestern France, almost all samples belonged to E. 

alphitoides or E. quercicola. However, the relative proportion of species varied widely 

between tree canopies and seedlings, with E. quercicola much more frequently detected 

(alone or in mixture with E. alphitoides) in seedlings than in the canopy of overhanging 

mature trees (Fig. 4, OR = 6.2, Wald’s Χ2 = 23.6, P < 0.001). There was also significant 

variation in the frequency of E. quercicola among the two years (OR = 3.59 for 2015 vs. 

2014), but no variation among the two locations.  

 

Leaf scale – visual sampling effect and differences among the upper and lower leaf sides 

There was a marked difference between discs taken from sporulating powdery mildew lesions 

on the upper leaf surface and discs taken randomly from the same leaves (Fig. 5). Although 

not as high as in the targeted sampling (91.3%), the detection rate of Erysiphe in leaf discs 

taken without targeting lesions reached 78.7%. The detection of E. hypophylla was higher in 

these non-targeted samples (i.e. irrespective of any visual selection) than in targeted samples 

(i.e. with visibly sporulating lesion), with 22% compared to 2%, respectively, and a very high 

odds ratio value of 15.8.  

Infections and successful detection of Erysiphe spp. were more frequent for the upper leaf 

side than for the lower leaf side (71 vs. 39 out of a total of 74 leaves). Whereas E. alphitoides 

and E. quercicola were detected on both sides of the leaves, E. hypophylla was only detected 

from lesions sampled on the lower leaf surfaces, either as mycelium and conidia or 

chasmothecia (Fig. 6). Erysiphe alphitoides was present on the upper surface of most leaves 

where E. hypophylla was detected on the lower surface. 
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Within leaf co-occurrence patterns 

Among the 177 leaf discs analyzed on the seven leaves, almost half (88, i.e. 48%) 

corresponded to a mixed infection by both E. alphitoides and E. quercicola (i.e. with both ITS 

detected, Fig. 7). In five out of the seven leaves, either E. alphitoides (for leaves C3, L7) or E. 

quercicola (for leaves C1, C2 and L5) occupied the whole infected surface (i.e. was detected 

in all leaf discs, or almost for L5), with some of the discs also infected by the other species, 

i.e. showing mixed infection (Fig. 7). The leaves C4 and L6 were almost equally colonized by 

the two species, with most discs showing mixed infections and a few discs with only E. 

alphitoides and others with only E. quercicola (Fig. 7). 

The observed Cscores were 240, 816 and 1972, for Cestas, Laveyron and the whole set of 

leaves, respectively. These values were higher than the upper critical values for the Cscores  

generated under the null hypothesis of randomness (P = 0.012, <0.001 and <0.001, 

respectively), suggesting that Erysiphe species were more segregated than expected by chance 

(Fig. S1).    

 

DISCUSSION   

Multi-scale distribution patterns are less well documented for invasive species than for native 

species, although they can offer crucial insights into their invasive potential and ecology 

(Allen and Shea 2006, Brown et al. 2008). For micro-organisms, such information is even 

scarcer because difficulties in species identification have long hampered biogeographical 

studies (Taylor et al. 2000, Geller et al. 2010; but see Linde et al. 2002). Our investigation 

provides the distribution and co-occurrence data of three closely-related fungal invasive 

species, across spatial scales ranging from an oak leaf to the European continent. We show 
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that both environmental and host factors explain the different invasion patterns and the 

coexistence of the three species through niche segregation at the various spatial scales. 

The continental scale: one broadly distributed species and two species with a restricted 

geographical range- a predominant effect of climate? 

Only one of the three Erysiphe species, namely E. alphitoides, was found to be spread 

throughout Europe, thus showing high invasive success. Numerous studies have seeked to 

identify inherent traits or characteristics explaining species invasiveness (Sakai et al. 2001, 

Philibert et al. 2011), among which climate match has been shown to be a consistent predictor 

across biological groups (Hayes and Barry 2008). While the ecophysiological requirements 

for E. alphitoides are not precisely documented, its spatial distribution encompasses a wide 

range of geographic and climatic gradients, in agreement with previous studies along 

altitudinal gradients (Desprez-Loustau et al. 2010, Dantec et al. 2015), which suggests 

tolerance to a wide range of environmental conditions. In contrast, E. quercicola and E. 

hypophylla showed more restricted and largely non-overlapping geographical distributions, 

and we found significant climatic variables explaining their distribution, which may reflect 

sensitivity to temperature, albeit in opposite direction for the two species. The most important 

variables for both species were temperature during the off-season (fall and winter), while 

there was no effect of the summer temperature, a pattern previously reported at a regional 

scale in France (Marçais et al. 2017). Hence, while many epidemiological studies focus on 

pathogen performance during the growing season, it may be the off-season that limits the 

distribution of plant pathogen species (e.g. Redondo et al. 2015), especially for obligate 

pathogens like powdery mildews, for which overwintering represents a critical stage (Tack 

and Laine 2014). One explanation for the success of E. hypophylla in colder climates may be 

the prolific production of efficient overwintering structures consituted by chasmothecia (the 

sexual fruiting bodies) (Roll-Hansen 1961, Sucharzewska 2009),  in strong contrast to the 
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absence or limited number of such structures in E. quercicola (Feau et al. 2012). The 

importance of sexual overwintering structures in the pattern of invasions was also shown for 

Phytophthora infestans, the agent of potato late blight. This plant pathogen was restricted to 

European regions with oceanic climates in the first decades after its introduction, when it 

occurred as a single mating type, but it spread to colder climates when sexual reproduction 

became possible after the introduction of the second mating type (Yuen and Andersson 2013). 

Whether the low production of chasmothecia is an inherent characteristic of E. quercicola, a 

consequence of bottleneck effects during the introduction into various regions (as occurred for 

P. infestans), or a secondary loss as observed in other species of invasive fungi (Gladieux et 

al. 2015) remains to be investigated. However, preliminary data suggests that E. quercicola is 

also characterized by a low production of chasmothecia in its putative native area in Asia. 

Like in Europe, E. quercicola is reported to occur on average in warmer regions than E. 

alphitoides in Japan (Takamatsu et al. 2007). It has been reported (in the asexual form) in 

other warm regions in the world, on different mediterranean and sub-tropical species 

(Takamatsu et al. 2007, Desprez-Loustau et al. 2017). The absence of E. hypophylla in 

warmer climates may relate to a high sensitivity to elevated temperature and possibly UV 

radiation (Willocquet et al. 1996), which may also explain its absence from the upper leaf 

surface. 

An alternative reason for the widespread distribution of E. alphitoides, and, reciprocally, of 

more restricted distributions for E. quercicola and E. hypophylla, may be the timing of 

introduction of the three different species resulting in different residence time, a major factor 

in invasion success (Wilson et al. 2007). E. alphitoides, described at the time of the first 

devastating outbreaks of oak powdery mildew in Europe (Griffon and Maublanc 1912), may 

have been introduced first. E. hypophylla was not reported before the 1960s; our observations 

show that its distribution has not enlarged much ever since (Roll-Hansen 1961, Cruchet 1962, 
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Viennot-Bourgin 1968, Braun and Cook 2012). E. quercicola has been detected only recently 

in Europe (Mougou et al. 2008, Desprez-Loustau et al. 2017), following its description 

(Takamatsu et al. 2007). The findings of E. quercicola in this study represent the first records 

in Armenia, Bulgaria, Hungary, Iran, Israel, Portugal, Slovakia, Sweden and Turkey 

(Desprez-Loustau et al. 2018). However, the species was probably overlooked for a long time 

when no molecular tools were available for its identification, as suggested by this large 

distribution and its detection in specimens dating from the late 1960s or early 1970s (Desprez-

Loustau et al. 2018). The total extent of suitable habitat is another important variable 

conditioning invasion success (Wilson et al. 2007), and this suitable habitat is represeneted by 

the distribution of susceptible hosts for obligate pathogens such as powdery mildews. 

Variation in the susceptibility to a given pathogen within a host genus or family is a common 

observation for both plants and animals (Le Gac et al. 2007, Bancroft et al. 2011). We here 

confirmed differential susceptibility of oak species to the three Erysiphe species (Takamatsu 

et al. 2007, Marçais et al. 2017). The spread of E. alphitoides could have been favored by the 

high susceptibility of Q. robur, which is the most widespread oak species in Europe. In 

contrast, the other two Erysiphe species were more frequent on oak species with more 

restricted ranges, such as E. quercicola on Q. pyrenaica. 

 

The stand scale: the impact of host developmental stage on the fungal community 

Age-related differences in susceptibility or resistance to pathogens have commonly been 

reported for plants, and are associated with different resistance mechanisms acting in juvenile 

vs. mature stages (Develey-Rivière and Galiana 2007). Our results may thus suggest that E. 

quercicola, mostly found in seedlings, is an agent of juvenile disease of oaks. This contrasts 

with E. alphitoides, which infects all stages. However, we emphasize that several factors other 
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than not only age-related resistance sensu stricto may explain the observed patterns, such as 

but also changes in plant growth patterns and architecture with aging may be involved, e.g. 

through the amount and distribution of susceptible organs with aging (Calonnec et al. 2013), 

and microclimate, or vertical distribution of inoculum. For tree powdery mildews, 

overwintering within canopies relies on the presence of chasmothecia, which attach to cracks 

in the the bark surface (Takamatsu 2004). The absence (or low production) of chasmothecia in 

E. quercicola may thus explain its low frequency in tree canopies. In contrast, polycyclic 

growth in seedlings (i.e., occurrence of successive shoot flushes separated by the production 

of new buds within the same season) may favor bud infection and thereby the alternative 

mode of overwintering (Desprez-Loustau et al. 2014).  

 

The leaf scale: spatial segregation vs. coexistence between and within leaf surfaces 

Leaves are increasingly recognised as a complex and heterogenous environment providing 

habitat for diverse microbial communities (Vorholt 2012). Such within-leaf variation is 

caused by a diversity of factors, like topography, structural elements such as trichomes, 

resource aggregation and microclimate, wich operate at different spatial scales on foliar 

microbes and allow their co-existence (Esser et al. 2015). Our study confirmed that leaf side 

(upper vs. lower) is a first important factor structuring the Erysiphe complex on oak leaves. In 

agreement with previous observations (Takamatsu et al. 2007) and its Latin binomial (Cruchet 

1962), E. hypophylla was only found on the lower leaf surfaces. This was in strong contrast to 

E. alphitoides and E. quercicola, which colonized both sides but were generally more 

abundant on the upper leaf surfaces. Comparison of fungal communities among upper and 

lower leaf surfaces are scarce, but Breeze and Dix (1981) suggested that upper leaf surfaces 

show higher spore deposition while lower leaf surfaces may provide more favourable 
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conditions for development due to lower levels of competition and protection from direct 

sunlight and rain washing. In our study, a lower competitive ability of E. hypophylla towards 

E. alphitoides was suggested by the results of the targeted vs. non-targeted sampling 

experiment, since E. hypophylla was much more frequent in randomly sampled discs than in 

those with profuse sporulation associated with E. alphitoides. These findings are in 

accordance with observations by early mycologists that E. hypophylla was often found in 

trees not infected by E. alphitoides and that its sporulation was much less abundant compared 

to E. alphitoides (Roll-Hansen 1961, Cruchet 1962). From a methodological point of view, 

our study demonstrates demonstrated that sampling the most obvious symptoms, as often 

done in plant pathology, can induce a bias when studying the frequency of cryptic species 

associated with the same disease. The relative frequency of E. hypophylla may thus have been 

underestimated in our study at the European scale with targeted sampling, even though this is 

unlikely to affect the general pattern of geographic distribution.  

Spatial segregation within leaves at a smaller scale, on the same leaf side, was suggested to 

occur between E. alphitoides and E. quercicola, possibly reflecting competition effects. 

Although less studied than in plants and animals, competition has been shown to occur within 

and between foliar pathogen species (Newton et al. 1997, Al-Naimi et al. 2005, Kozanitas et 

al. 2017). In the particular interaction between E. quercicola and E. alphitoides, priority 

effects could be strongly involved, as shown in other systems (Vannette and Fukami 2014), 

since the two species were shown to exhibit different temporal dynamics  during the season, 

associated with the differences in overwintering modes (buds vs. chasmothecia) (Feau et al. 

2012, Hamelin et al. 2016). 

 Further investigations at even finer spatial scales and integrating temporal dynamics, e.g. 

with sequential and co-inoculation experiments, are now required to test several hypotheses 

arising from our study, related to competitive elucidate the processes underlying interactions 
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between Erysiphe species on oak leaves. including resource competition (Pozo et al. 2016).  

(using sequential and co-inoculation experiments, as in Kozanitas et al. 2017). Likewise, 

experimental field and laboratory studies could tease apart the independent and interactive 

effects of host species, host age, inoculum density and microclimate on the differences in 

mildew communities observed between trees and seedlings. 

 

CONCLUSION 

Altogether, our results show that seemingly similar species exhibit different distributions 

across multiple spatial scales in their invaded area, even though all three Erysiphe species 

successfully completed a host shift to European oaks, especially Q. robur. Environmental and 

host factors (climate and micro-climate, host species, host development, leaf characteristics) 

acting at each spatial scale appeared were suggested as important drivers in the dynamics of 

this simple fungal community. Context-dependent mechanisms linked to the history of 

invasions, such as residence time, genetic drift or loss of sexual reproduction may also be 

involved. This study highlights the role of environmental and host heterogeneities at scales 

ranging from a single leaf to a continent as factors shaping invasion patterns in related 

pathogen species, through with niche differentiation allowing avoidance of limiting 

competition with other native or invasive species.  
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Figure captions 

 

Figure 1. Geographic distribution in Europe and neighbouring Asian countries of the three 

Erysiphe species associated with oak powdery mildew. Circle sizes represent the sampling 

effort per country, ranging from 1-5 samples (smallest circles) to more than 40 samples 

(largest circles).  

Figure 2. Relationship between winter temperature and probability of occurrence of Erysiphe 

alphitoides, E. hypophylla and E. quercicola in Europe (the shaded area represents the 95% 

confidence interval) 

Figure 3. Distribution of the Erysiphe species on different oak species within the same 

countries. Shown are pooled data for Germany and Austria (top) and Spain and Portugal 

(bottom). EA stands for E. alphitoides, EQ for E. quercicola, EH for E. hypophylla. 

Figure 4. The community composition of Erysiphe species in mature tree canopies versus 

seedlings growing under their canopies. EA stands for E. alphitoides, EQ for E. quercicola, 

EH for E. hypophylla. 

Figure 5. Detection probability of Erysiphe species among pairs of discs taken on the same 

leaves, either cut in a visibly sporulating lesion or in a non-targeted sample (i.e. cut without a 

priori information on the presence of a lesion). EA stands for E. alphitoides, EQ for E. 

quercicola, EH for E. hypophylla. 

Figure 6. The relative frequency of each of the three Erysiphe species on the adaxial (upper) 

and abaxial (lower) surfaces of 74 leaves. EA stands for E. alphitoides, EQ for E. quercicola, 

EH for E. hypophylla. 
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Figure 7. Distribution of Erysiphe alphitoides and E. quercicola at the leaf level, for leaves  

of Quercus robur collected in spring 2015 in Cestas (code 'C') and Laveyron (code 'L') in 

France. The diameter of leaf discs is 4 mm, with the exception of one or two larger leaf discs 

per leaf. Note that the scale varies among leaves. 

 

Figure S1. Null distribution of Cscores as based on 1000 randomizations, over the whole set of 

leaves, or independently for each site. The vertical thick line represents the observed Cscore. 

Dashed lines represent the upper and lower critical values of the two-tailed test at a level of 

statistical significance of 5%. 
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Table S1. Results of generalized linear models with seasonal climatic variables (T = temperature, P = 

precipitation) tested separately as predictor variables of the presence of Erysiphe species. For each 

species, models are ranked by decreasing values of QAIC = (QAIC without  predictor) - (QAIC with 

predictor). Predictors with a significant effect are indicated in bold. 

 

Erysiphe 

species 

Predictor 

variable 

QAIC *                  Wald Chi2 

 

P-value 

 

Odds Ratio  

 (95% CI) 

E. alphitoides Pspring 2 (104-102) 2.7 0.1 1.01 (0.99-1.02)  

 Twinter 1 (108-107) 2.7 0.1 1.18 (0.97-1.44)  

 Tfall 1 (107-106) 2.9 0.09 1.25 (0.97-1.63)  

 Pfall 1 (103-102) 2.2 0.14 1.01 (0.99-1.02) 

 Pwinter 0 (97-97) 1.3 0.26 1.00 (0.99-1.01)  

 Tspring 0 (95-95) 2 0.16 1.17 (0.94-1.44)  

 Tsummer -2 (84-86) 0.2 0.62 1.17 (0.80-1.71)  

 Psummer -2 (76-78) 0.5 0.46 1.01 (0.99-1.02) 

E. quercicola Twinter 9 (72-63) 8.2 0.004 1.41 (1.12-1.79) 

 Tfall 8 (64-56) 6.8 0.009 1.68 (1.14-2.49) 

 Tspring 3 (61-58) 2.9 0.09 1.51 (0.94-2.42) 

 Pspring 1 (55-54) 4.1 0.04 1.01 (1.00-1.02) 

 Tsummer 0 (51-51) 1.9 0.17 1.46 (0.85-2.51) 

 Psummer 0 (44-44) 1.6 0.21 0.99 (0.97-1.01) 

 Pwinter -1 (45-46) 1.6 0.2 1.00 (0.99-1.01) 

 Pfall -1 (45-46) 0.8 0.36 1.00 (0.99-1.01) 

E. hypophylla Twinter 13 (174-161) 11.4 0.0007 0.78 (0.67-0.90) 
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 Tfall 11 (166-55) 11.3 0.0008 0.72 (0.60-0.87) 

 Pspring 11 (169-158) 9 0.003 0.99 (0.98-0.99) 

 Tspring 6 (136-130) 7.7 0.006 0.80 (0.68-0.94) 

 Pwinter 5 (141-136) 4.2 0.04 1.00 (0.99-1.00) 

 Tsummer 2 (119-117) 3.7 0.054 0.75 (0.57-1.00) 

 Pfall 1 (115-114) 1.9 0.17 1.00 (0.99-1.00) 

 Psummer -2 (106-108) 0.4 0.53 1.00 (0.99-1.02) 

* QAIC values without predictor are different between models for a single species because a (different) scale 

parameter was included to account for overdispersion for each tested predictor   

  

 

 


