1,840 research outputs found

    MEASURING THE MASS OF 4UO900-40 DYNAMICALLY

    Get PDF
    Accurate measurements of neutron star masses are needed to constrain the equation of state of neutron star matter - of importance to both particle physics and the astrophysics of neutron stars - and to identify the evolutionary track of the progenitor stars that form neutron stars. The best measured values of the mass of 4UO900-40 (= Vela XR-l), 1.86 +/- 0.16 Msun (Barziv et al. 2001) and 1.93 +/- 0.20 Msun (Abubekerov et al. 2004), make it a leading candidate for the most massive neutron star known. The direct relationship between the maximum mass of neutron stars and the equation of state of ultra-dense matter makes 4UO900-40 an important neutron star mass to determine accurately. The confidence interval on previous mass estimates, obtained from observations that include parameters determined by non-dynamical methods, are not small enough to significantly restrict possible equations of state. We describe here a purely dynamical method for determining the mass of 4UO900-40, an X-ray pulsar, using the reprocessed UV pulses emitted by its BO.5Ib companion. One can derive the instantaneous radial velocity of each component by simultaneous X-ray and UV observations at the two quadratures of the system. The Doppler shift caused by the primary's rotational velocity and the illumination pattern of the X-rays on the primary, two of the three principal contributors to the uncertainty on the derived mass of the neutron star, almost exactly cancel by symmetry in this method. A heuristic measurement of the mass of 4UO900-40 using observations obtained previously with the High Speed Photometer on HST is given in Appendix A

    Modeling Kepler transit light curves as false positives: Rejection of blend scenarios for Kepler-9, and validation of Kepler-9d, a super-Earth-size planet in a multiple system

    Get PDF
    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive, we describe a procedure (BLENDER) to model the photometry in terms of a "blend" rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9, a target harboring two previously confirmed Saturn-size planets (Kepler-9b and Kepler-9c) showing transit timing variations, and an additional shallower signal with a 1.59-day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals, and provide independent validation of their planetary nature. For the shallower signal we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9d) in a multiple system, rather than a false positive. The radius is determined to be 1.64 (+0.19/-0.14) R(Earth), and current spectroscopic observations are as yet insufficient to establish its mass.Comment: 20 pages in emulateapj format, including 8 tables and 16 figures. To appear in ApJ, 1 January 2010. Accepted versio

    High-precision photometry by telescope defocussing. III. The transiting planetary system WASP-2

    Full text link
    We present high-precision photometry of three transits of the extrasolar planetary system WASP-2, obtained by defocussing the telescope, and achieving point-to-point scatters of between 0.42 and 0.73 mmag. These data are modelled using the JKTEBOP code, and taking into account the light from the recently-discovered faint star close to the system. The physical properties of the WASP-2 system are derived using tabulated predictions from five different sets of stellar evolutionary models, allowing both statistical and systematic errorbars to be specified. We find the mass and radius of the planet to be M_b = 0.847 +/- 0.038 +/- 0.024 Mjup and R_b = 1.044 +/- 0.029 +/- 0.015 Rjup. It has a low equilibrium temperature of 1280 +/- 21 K, in agreement with a recent finding that it does not have an atmospheric temperature inversion. The first of our transit datasets has a scatter of only 0.42 mmag with respect to the best-fitting light curve model, which to our knowledge is a record for ground-based observations of a transiting extrasolar planet.Comment: Accepted for publication in MNRAS. 9 pages, 3 figures, 10 table

    Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run

    Get PDF
    Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc

    Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data

    Get PDF
    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars

    Upper Limits on a Stochastic Background of Gravitational Waves

    Get PDF
    The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Ω_0<8.4×10^(-4) in the 69–156 Hz band is ~10^5 times lower than the previous result in this frequency range

    Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3

    Get PDF
    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M_⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10^(-4), 3.1×10^(-5), and 6.4×10^(-6)  Mpc^(-3) yr^(-1), respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge
    corecore