649 research outputs found

    A Computational Model of the Development of Separate Representations of Facial Identity and Expression in the Primate Visual System

    Get PDF
    Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression

    leap ucd 2017 centrifuge tests at cambridge

    Get PDF
    As part of the LEAP project the seismic response of a liquefiable 5° slope was modelled at a number of centrifuges around the world. In this paper the two experiments conducted at Cambridge University are discussed. The model preparation is detailed with particular emphasis on the sand pouring, saturation and slope cutting process. The presence of the third harmonic in the input motion is shown and its significance discussed. The potential for wavelet denoising to filter random electrical noise from the pore pressure traces is illustrated. CPT strength profiles are highlighted and a possible softer layer in one of the tests is discussed. Whilst the specifications called for one dense and one loose test, the likelihood that both Cambridge tests were loosely poured is assessed. The PIV technique is used to obtain the displacements of the slope during the test. Finally, the correspondence between the PIV displacements and physical measurements of the marker movements is compared

    A Preclinical Ultrasound Method for the Assessment of Vascular Disease Progression in Murine Models

    Get PDF
    INTRODUCTION: The efficacy of preclinical ultrasound at providing a quantitative assessment of mouse models of vascular disease is relatively unknown. In this study, preclinical ultrasound was used in combination with a semi-automatic image processing method to track arterial distension alterations in mouse models of abdominal aortic aneurysm and atherosclerosis. METHODS: Longitudinal B-mode ultrasound images of the abdominal aorta were acquired using a preclinical ultrasound scanner. Arterial distension was assessed using a semi-automatic image processing algorithm to track vessel wall motion over the cardiac cycle. A standard, manual analysis method was applied for comparison. RESULTS: Mean arterial distension was significantly lower in abdominal aortic aneurysm mice between day 0 and day 7 post-onset of disease (p < 0.01) and between day 0 and day 14 (p < 0.001), while no difference was observed in sham control mice. Manual analysis detected a significant decrease (p < 0.05) between day 0 and day 14 only. Atherosclerotic mice showed alterations in arterial distension relating to genetic modification and diet. Arterial distension was significantly lower (p < 0.05) in Ldlr−/−(++/−−) mice fed high-fat western diet when compared with both wild type (++/++) mice and Ldlr−/−(++/−−) mice fed chow diet. The manual method did not detect a significant difference between these groups. CONCLUSIONS: Arterial distension can be used as an early marker for the detection of arterial disease in murine models. The semi-automatic analysis method provided increased sensitivity to differences between experimental groups when compared to the manual analysis method

    Metabonomics and Intensive Care

    Get PDF
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901

    Paclitaxel and concomitant radiotherapy in high-risk endometrial cancer patients: preliminary findings

    Get PDF
    BACKGROUND: There is still much debate about the best adjuvant therapy after surgery for endometrial cancer (EC) and there are no current guidelines. Radiotherapy (RT) alone does not seem to improve overall survival. We investigated whether concomitant Paclitaxel (P) and RT gave better clinical results. METHODS: Twenty-three patients with high-risk EC (stage IIB, IIIA, IIIC or IC G3 without lymphadenectomy or with aneuploid tumor) underwent primary surgery and were then referred for adjuvant therapy. P was given at a dose of 60 mg/m2 once weekly for five weeks during RT, which consisted of a total radiation dose of 50.4 Gy. Three further weekly cycles of P at a dose of 80 mg/m2 were given at the end of RT. Overall survival and disease-free survival were calculated from the time of surgery. Patterns of failure were recorded by the sites of failure. RESULTS: A total of 157 cycles of P were administered both during radiotherapy and consolidation chemotherapy. Relapses occurred in five patients (21.7%). Median time to recurrence was 18.6 months (range 3–28). Survival rate for all the patients was 78.2%. Overall survival for the patients who completed chemo-radiation was of 81%. In this group median time to recurrence was 19.2 months (range 3–28). All recurrences were outside the radiation field. Mortality rate was 14.2%. CONCLUSION: This small series demonstrates pelvic radiotherapy in combination with weakly P followed by three consolidation chemotherapy cycles as an effective combined approach in high risk endometrial carcinoma patients

    Management of Portal Hypertension in Children

    Get PDF
    Management of portal hypertension in children has evolved over the past several decades. Portal hypertension can result from intrahepatic or extrahepatic causes. Management should be tailored to the child based on the etiology of the portal hypertension and on the functionality of the liver. The most serious complication of portal hypertension is gastroesophageal variceal bleeding, which has a mortality of up to 30%. Initial treatment of bleeding focuses on stabilizing the patient. Further treatment measures may include endoscopic, medical, or surgical interventions as appropriate for the child, depending on the cause of the portal hypertension. β-Blockers have not been proven to effectively prevent primary or secondary variceal bleeding in children. Sclerotherapy and variceal band ligation can be used to stop active bleeding and can prevent bleeding from occurring. Transjugular intrahepatic portosystemic shunts and surgical shunts may be reserved for those who are not candidates for transplant or have refractory bleeding despite medical or endoscopic treatment

    Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network

    Get PDF
    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be 20to20 to 30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance

    Accurate path integration in continuous attractor network models of grid cells

    Get PDF
    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of ~10–100 meters and ~1–10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore