252 research outputs found
Ribosomes Pause during the Expression of the Large ATP Synthase Gene Cluster in Spinach Chloroplasts
A Mutation in HOXA2 Is Responsible for Autosomal-Recessive Microtia in an Iranian Family
Microtia, a congenital deformity manifesting as an abnormally shaped or absent external ear, occurs in one out of 8,000-10,000 births. We ascertained a consanguineous Iranian family segregating with autosomal-recessive bilateral microtia, mixed symmetrical severe to profound hearing impairment, and partial cleft palate. Genome-wide linkage analysis localized the responsible gene to chromosome 7p14.3-p15.3 with a maximum multi-point LOD score of 4.17. In this region, homeobox genes from the HOXA cluster were the most interesting candidates. Subsequent DNA sequence analysis of the HOXA1 and HOXA2 homeobox genes from the candidate region identified an interesting HOXA2 homeodomain variant: a change in a highly conserved amino acid (p.Q186K). The variant was not found in 231 Iranian and 109 Belgian control samples. The critical contribution of HoxA2 for auditory-system development has already been shown in mouse models. We built a homology model to predict the effect of this mutation on the structure and DNA-binding activity of the homeodomain by using the program Modeler 8v2. In the model of the mutant homeodomain, the position of the mutant lysine side chain is consistently farther away from a nearby phosphate group; this altered position results in the loss of a hydrogen bond and affects the DNA-binding activity. © 2008 The American Society of Human Genetics
Molecular evolution of the insect-specific flaviviruses
There has been an explosion in the discovery of ‘insect-specific’ flaviviruses and/or their related sequences in natural mosquito populations. Herein we review all ‘insect-specific’ flavivirus sequences currently available and conduct phylogenetic analyses of both the ‘insect-specific’ flaviviruses and available sequences of the entire genus Flavivirus. We show that there is no statistical support for virus–mosquito co-divergence, suggesting that the ‘insect-specific’ flaviviruses may have undergone multiple introductions with frequent host switching. We discuss potential implications for the evolution of vectoring within the family Flaviviridae. We also provide preliminary evidence for potential recombination events in the history of cell fusing agent virus. Finally, we consider priorities and guidelines for future research on ‘insect-specific’ flaviviruses, including the vast potential that exists for the study of biodiversity within a range of potential hosts and vectors, and its effect on the emergence and maintenance of the flaviviruses
Small RNA analysis in Sindbis virus infected human HEK293 cells
In contrast to the defence mechanism of RNA interference (RNAi) in plants and invertebrates, its role in the innate response to virus infection of mammals is a matter of debate. Since RNAi has a well-established role in controlling infection of the alphavirus Sindbis virus (SINV) in insects, we have used this virus to investigate the role of RNAi in SINV infection of human cells
Tunable Growth Factor Delivery from Injectable Hydrogels for Tissue Engineering
Current sustained delivery strategies of protein therapeutics are limited by the fragility of the protein, resulting in minimal quantities of bioactive protein delivered. In order to achieve prolonged release of bioactive protein, an affinity-based approach was designed which exploits the specific binding of the Src homology 3 (SH3) domain with short proline-rich peptides. Specifically, methyl cellulose was modified with SH3-binding peptides (MC-peptide) with either a weak affinity or strong affinity for SH3. The release profile of SH3-rhFGF2 fusion protein from hyaluronan MC-SH3 peptide (HAMC-peptide) hydrogels was investigated and compared to unmodified controls. SH3-rhFGF2 release from HAMC-peptide was extended to 10 days using peptides with different binding affinities compared to the 48 h release from unmodified HAMC. This system is capable of delivering additional proteins with tunable rates of release, while maintaining bioactivity, and thus is broadly applicable
Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal
Unlike most known flaviviruses (Family, Flaviviridae: Genus, Flavivirus), insect-only flaviviruses are a unique group of flaviviruses that only infect invertebrates. The study of insect-only flaviviruses has increased in recent years due to the discovery and characterization of numerous novel flaviviruses from a diversity of mosquito species around the world. The widespread discovery of these viruses has prompted questions regarding flavivirus evolution and the potential impact of these viruses on the transmission of flaviviruses of public health importance such as WNV. Therefore, we tested the effect of Culex flavivirus Izabal (CxFV Izabal), an insect-only flavivirus isolated from Culex quinquefasciatus mosquitoes in Guatemala, on the growth and transmission of a strain of WNV isolated concurrently from the same mosquito species and location. Prior infection of C6/36 (Aedes albopictus mosquito) cells or Cx. quinquefasciatus with CxFV Izabal did not alter the replication kinetics of WNV, nor did it significantly affect WNV infection, dissemination, or transmission rates in two different colonies of mosquitoes that were fed blood meals containing varying concentrations of WNV. These data demonstrate that CxFV probably does not have a significant effect on WNV transmission efficiency in nature
SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum
Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV), replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs) were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200–300 nm), and “vesicle packets” apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this “replication network” will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions
Antibody Repertoires in Humanized NOD-scid-IL2Rγnull Mice and Human B Cells Reveals Human-Like Diversification and Tolerance Checkpoints in the Mouse
Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2Rγnull engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH) and light (IGK and IGL) genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2Rγnull mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3) repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential DH-JH pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by genetic factors intrinsic to human B cells and are principally unaltered by differences between mouse and human stromal microenvironments
Bayesian Modeling of the Yeast SH3 Domain Interactome Predicts Spatiotemporal Dynamics of Endocytosis Proteins
A genome-scale specificity and interaction map for yeast SH3 domain-containing proteins reveal how family members show selective binding to target proteins and predicts the dynamic localization of new candidate endocytosis proteins
MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures
Long noncoding RNAs (lncRNAs) regulate gene expression by association with chromatin, but how they target chromatin remains poorly understood. We have used chromatin RNA immunoprecipitation-coupled high-throughput sequencing to identify 276 lncRNAs enriched in repressive chromatin from breast cancer cells. Using one of the chromatin-interacting lncRNAs, MEG3, we explore the mechanisms by which lncRNAs target chromatin. Here we show that MEG3 and EZH2 share common target genes, including the TGF-β pathway genes. Genome-wide mapping of MEG3 binding sites reveals that MEG3 modulates the activity of TGF-β genes by binding to distal regulatory elements. MEG3 binding sites have GA-rich sequences, which guide MEG3 to the chromatin through RNA-DNA triplex formation. We have found that RNA-DNA triplex structures are widespread and are present over the MEG3 binding sites associated with the TGF-β pathway genes. Our findings suggest that RNA-DNA triplex formation could be a general characteristic of target gene recognition by the chromatin-interacting lncRNAs
- …