275 research outputs found
Serving performance in a suprapostural visual signal detection task: context-dependent and direction-specific control of body sway with fingertip light touch
Keeping gaze fixed on a target during visual smooth pursuit or touch light during fingertip contact while standing may resemble the goals of a suprapostural task with the implicit demands to minimize self-imposed sensorimotor variability. To test whether the principle of a suprapostural task generalizes to more complex sensorimotor stimulus-response mappings, we investigated how the control of body sway is influenced by an implicit feedback coupling (IFC) between the variability of touch forces at the contact point and perceptual difficulty, that is vertical jitter of a horizontally oscillating Landolt-C, in a visual signal detection task (VSDT). Mediolateral (ML) body sway of ten young healthy adults was assessed in four IFC conditions: (1) LT with independent jitter (LT-IJ), (2) LT with jitter depending on LT contact force (LT-CF), (3) LT with jitter depending on body sway (LT-BS), and (4) no contact with jitter depending on body sway (NT-BS). We assumed that the postural control system would be responsive to IFC and therefore reduce body sway in both IFC conditions. Resulting mediolateral body sway differed between the IFC conditions. Reduced sway was found in LT-CF and LT-BS compared to LT-IJ and in LT-BS compared to NT-BS. Our results demonstrate that processes controlling body sway can reduce postural variability below a variability level achieved by LT augmentation of body sway-related feedback alone. Both direct (LT-CF) and indirect (LT-BS) IFC involvement of fingertip contact minimized sway, which implies that no hierarchy existed for whole body sway or precision of fingertip contact (integration of both control processes) or that they can be reversed flexibly (one facilitating the other) if it serves the implicit goal of reduced perceptual noise and enhanced performance within the context of our suprapostural VSDT
Are serial CA 19-9 kinetics helpful in predicting survival in patients with advanced or metastatic pancreatic cancer treated with gemcitabine and cisplatin?
Background: Serial kinetics of serum CA 19-9 levels have been reported to reflect response and survival in patients with pancreatic cancer undergoing surgery, radiotherapy, and chemotherapy. We prospectively studied serial kinetics of serum CA 19-9 levels of patients with locally advanced or metastatic disease treated with gemcitabine and cisplatin. Patients and Methods: Enrolled in the study were 87 patients (female/male = 26/61; stage III/IV disease = 24/63). Patients received gemcitabine 1,000 mg/m(2) on days 1, 8, and 15 plus cisplatin 50 mg/m(2) on days 1 and 15, every 4 weeks. Serum samples were collected at the onset of chemotherapy and before the start of a new treatment cycle (day 28). Results: 77 of 87 patients (88.5%) with initially elevated CA 19-9 levels were included for evaluation. According to imaging criteria, 4 (5.2%) achieved a complete remission and 11 (14.3%) achieved partial remission, yielding an overall response rate of 19.5%. 43 (55.8%) patients were CA 19-9 responders, defined by greater than or equal to50% decrease in CA 19-9 serum levels within 2 months after treatment initiation. Except for one, all patients who had responded by imaging criteria (n = 14) fulfilled the criterion of a CA 19-9 responder. Despite being characterized as non-responders by CT-imaging criteria (stable/progressive disease), 29 patients were classified as CA 19-9 responders (positive predictive value 32.5%). Independent of the response evaluation by CT, CA 19-9 responders survived significantly longer than CA 19-9 non-responders (295 d; 95% CI: 285-445 vs. 174 d; 95% CI: 134-198; p = 0.022). Conclusion: CA 19-9 kinetics in serum serve as an early and reliable indicator of response and help to predict survival in patients with advanced pancreatic cancer receiving effective treatment with gemcitabine and cisplatin
Postural instability in an immersive Virtual Reality adapts with repetition and includes directional and gender specific effects
The ability to handle sensory conflicts and use the most appropriate sensory information is vital for successful recovery of human postural control after injury. The objective was to determine if virtual reality (VR) could provide a vehicle for sensory training, and determine the temporal and spatial nature of such adaptive changes. Twenty healthy subjects participated in the study (10 females). The subjects watched a 90-second VR simulation of railroad (rollercoaster) motion in mountainous terrain during five repeated simulations, while standing on a force platform that recorded their stability. The immediate response to watching the VR movie was an increased level of postural instability. Repeatedly watching the same VR movie significantly reduced both the anteroposterior (62%, p < 0.001) and lateral (47%, p = 0.001) energy used. However, females adapted more slowly to the VR stimuli as reflected by higher use of total (p = 0.007), low frequency (p = 0.027) and high frequency (p = 0.026) energy. Healthy subjects can significantly adapt to a multidirectional, provocative, visual environment after 4–5 repeated sessions of VR. Consequently, VR technology might be an effective tool for rehabilitation involving visual desensitisation. However, some females may require more training sessions to achieve effects with VR
Progress on the developments of an advanced aqueous amine-based post combustion CO 2 capture utilizing BASF’s OASE® blue technology
Presented at the 2015 Carbon Management Technology Conference
Sugarland, Texas; November 18, 2015.U.S. Department of Energy Award Number DE-FE0026588Ope
Wavefunction statistics in open chaotic billiards
We study the statistical properties of wavefunctions in a chaotic billiard
that is opened up to the outside world. Upon increasing the openings, the
billiard wavefunctions cross over from real to complex. Each wavefunction is
characterized by a phase rigidity, which is itself a fluctuating quantity. We
calculate the probability distribution of the phase rigidity and discuss how
phase rigidity fluctuations cause long-range correlations of intensity and
current density. We also find that phase rigidities for wavefunctions with
different incoming wave boundary conditions are statistically correlated.Comment: 4 pages, RevTeX; 1 figur
Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams
Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national - NLP and regional-level - RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of co-adaptive behaviors between interacting neurobiological social system agents in the context of sport performance. Such observations have broader implications for training design involving manipulations of numerical relations between interacting members of social collectives
Human bipedal instability in tree canopy environments is reduced by “light touch” fingertip support
Whether tree canopy habitats played a sustained role in the ecology of ancestral bipedal hominins is unresolved. Some argue that arboreal bipedalism was prohibitively risky for hominins whose increasingly modern anatomy prevented them from gripping branches with their feet. Balancing on two legs is indeed challenging for humans under optimal conditions let alone in forest canopy, which is physically and visually highly dynamic. Here we quantify the impact of forest canopy characteristics on postural stability in humans. Viewing a movie of swaying branches while standing on a branch-like bouncy springboard destabilised the participants as much as wearing a blindfold. However “light touch”, a sensorimotor feedback strategy based on light fingertip support, significantly enhanced their balance and lowered their thigh muscle activity by up to 30%. This demonstrates how a light touch strategy could have been central to our ancestor’s ability to avoid falls and reduce the mechanical and metabolic cost of arboreal feeding and movement. Our results may also indicate that some adaptations in the hand that facilitated continued access to forest canopy may have complemented, rather than opposed, adaptations that facilitated precise manipulation and tool use
Neurobiological degeneracy and affordance perception support functional intra-individual variability of inter-limb coordination during ice climbing
This study investigated the functional intra-individual movement variability of ice climbers differing in skill level to understand how icefall properties were used by participants as affordances to adapt inter-limb coordination patterns during performance. Seven expert climbers and seven beginners were observed as they climbed a 30 m icefall. Movement and positioning of the left and right hand ice tools, crampons and the climber's pelvis over the first 20 m of the climb were recorded and digitized using video footage from a camera (25 Hz) located perpendicular to the plane of the icefall. Inter-limb coordination, frequency and types of action and vertical axis pelvis displacement exhibited by each climber were analysed for the first five minutes of ascent. Participant perception of climbing affordances was assessed through: (i) calculating the ratio between exploratory movements and performed actions, and (ii), identifying, by self-confrontation interviews, the perceptual variables of environmental properties, which were significant to climbers for their actions. Data revealed that experts used a wider range of upper and lower limb coordination patterns, resulting in the emergence of different types of action and fewer exploratory movements, suggesting that effective holes in the icefall provided affordances to regulate performance. In contrast, beginners displayed lower levels of functional intra-individual variability of motor organization, due to repetitive swinging of ice tools and kicking of crampons to achieve and maintain a deep anchorage, suggesting lack of perceptual attunement and calibration to environmental properties to support climbing performanc
- …