9 research outputs found

    Sensitization of human melanoma cells for TRAIL-induced apoptosis by a selective aurora kinase A inhibitor

    Get PDF
    Different therapeutic strategies in metastatic melanoma focused on signalling pathways controlling cell proliferation, cell cycle and apoptosis. While TRAIL (TNF-related apoptosis inducing ligand) has been shown to be an interesting candidate for inducing apoptosis in cancer cells without affecting normal cells, the ability of cancer cells to develop resistance, limits its therapeutic potential. Using a recently established experimental A-375 melanoma cell model for investigating TRAIL resistance, we could demonstrate that the aurora kinase A inhibitor Alisertib (MLN 8237) enhances the proapoptotic effects of TRAIL and sensitizes TRAIL-selected melanoma cells with acquired resistance, associated with an activation of intrinsic mitochondrial apoptotic pathways. In course of this activation an upregulation of p53 in the nuclear fraction was shown. Thus, the aurora kinase A inhibitor Alisertib is able to overcome TRAIL-induced resistance in melanoma cells suggesting the combination of TRAIL and Alisertib as a promising therapeutic strategy for metastatic melanoma.

    Repurposing of the antibiotic nitroxoline for the treatment of mpox

    Get PDF
    The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic side‐effects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimat‐resistant strain and increased the anti‐mpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often co‐transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity

    Learning in the Single-Cell Organism <i>Physarum polycephalum</i>: Effect of Propofol

    No full text
    Propofol belongs to a class of molecules that are known to block learning and memory in mammals, including rodents and humans. Interestingly, learning and memory are not tied to the presence of a nervous system. There are several lines of evidence indicating that single-celled organisms also have the capacity for learning and memory which may be considered as basal intelligence. Here, we introduce a new experimental model for testing the learning ability of Physarum polycephalum, a model organism frequently used to study single-celled “intelligence”. In this study, the impact of propofol on Physarum’s “intelligence” was tested. The model consists of a labyrinth of subsequent bifurcations in which food (oat flakes soaked with coconut oil-derived medium chain triglycerides [MCT] and soybean oil-derived long chain triglycerides [LCT]) or propofol in MCT/LCT) is placed in one of each Y-branch. In this setting, it was tested whether Physarum memorized the rewarding branch. We saw that Physarum was a quick learner when capturing the first bifurcations of the maze; thereafter, the effect decreased, perhaps due to reaching a state of satiety. In contrast, when oat flakes were soaked with propofol, Physarum’s preference for oat flakes declined significantly. Several possible actions, including the blocking of gamma-aminobutyric acid (GABA) receptor signaling, are suggested to account for this behavior, many of which can be tested in our new model

    G protein‐coupled receptor 40 expression in human melanoma – correlation with tumour thickness, AJCC stage and survival

    No full text
    Background In melanoma, preclinical data suggest a possible role of polyunsaturated fatty acids inhibiting cell growth. A new target molecule for free fatty acids, the G protein-coupled receptor GPR40, was identified in melanoma cells. Objectives The aim of this study was to investigate GPR40 expression in human melanocytic tissues and to evaluate its potential as a prognostic marker. Methods and Results A total of 114 tissue sections of naevi, primary melanoma and melanoma metastasis were immunohistochemically stained with anti-GPR40. The staining was evaluated, using the immunoreactivity scoring system. Compared to naevi, primary melanoma and melanoma metastasis showed significantly higher levels of GPR40 (P < 0.05). In primary melanoma, GPR40 expression positively correlated with tumour thickness (P = 0.044) and AJCC level (P = 0.017) and in melanoma metastasis with AJCC level (P = 0.035). Primary melanoma patients with high levels of GPR40 had a significantly poorer overall survival (P = 0.004) and shorter disease-free survival (0.040). Conclusion The present study identified GPR40 as a novel target molecule in melanoma. First evidence for a potential role of the receptor in tumour progression and metastases was found, and it could be demonstrated that GPR40 expression is negatively correlated with patient’s survival

    Collagen I promotes adipocytogenesis in adipose-derived stem cells in vitro

    No full text
    hallmark of ageing is the redistribution of body fat. Particularly, subcutaneous fat decreases paralleled by a decrease of skin collagen I are typical for age-related skin atrophy. In this paper, we hypothesize that collagen I may be a relevant molecule stimulating the differentiation of adipose-derived stem cells (ASCs) into adipocytes augmenting subcutaneous fat. In this context lipogenesis, adiponectin, and collagen I receptor expression were determined. Freshly isolated ASCs were characterized by stemness-associated surface markers by FACS analysis and then transdifferentiated into adipocytes by specific medium supplements. Lipogenesis was evaluated using Nile Red staining and documented by fluorescence microscopy or quantitatively measured by using a multiwell spectrofluorometer. Expression of adiponectin was measured by real-time RT-PCR and in cell-free supernatants by ELISA, and expression of collagen I receptors was observed by western blot analysis. It was found that supports coated with collagen I promote cell adhesion and lipogenesis of ASCs. Interestingly, a reverse correlation to adiponectin expression was observed. Moreover, we found upregulation of the collagen receptor, discoidin domain-containing receptor 2; receptors of the integrin family were absent or downregulated. These findings indicate that collagen I is able to modulate lipogenesis and adiponectin expression and therefore may contribute to metabolic dysfunctions associated with ageing

    Methylprednisolone Blocks Autoantibody-Induced Tissue Damage in Experimental Models of Bullous Pemphigoid and Epidermolysis Bullosa Acquisita through Inhibition of Neutrophil Activation

    Get PDF
    Corticosteroids are regularly used to treat autoimmune diseases, such as bullous pemphigoid (BP). In BP, autoantibodies bind to type XVII collagen (COL17), located at the dermal-epidermal junction. A crucial role of neutrophils in experimental BP has been established. Specifically, reactive oxygen species and proteolytic granule enzymes mediate tissue injury. Therefore, we investigated the effects of methylprednisolone (MP) on neutrophils, which are likely to be affected by topical treatment. First, MP inhibited dermal-epidermal separation ex vivo in cryosections of the human skin induced by co-incubation of BP autoantibodies with neutrophils from healthy volunteers. Next, MP inhibited neutrophil activation in vitro induced by immune complexes (ICs) of COL17 and autoantibodies. This neutrophil activation was associated with phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and Akt. In turn, inhibition of ERK1/2, p38 MAPK, or Akt phosphorylation inhibited neutrophil activation by IC in vitro and dermal-epidermal separation ex vivo. In addition, we observed an increase of p38 MAPK phosphorylation in dermal infiltrates of BP patients. Treatment of mice with either MP or inhibitors of p38-MAPK or ERK1/2 phosphorylation impaired induction of autoantibody- or irritant-induced neutrophil-dependent inflammation. We here identify the inhibition of Akt, ERK1/2, and p38 MAPK phosphorylation as molecular mechanisms to promote MP's therapeutic effects.Journal of Investigative Dermatology advance online publication, 4 April 2013; doi:10.1038/jid.2013.91
    corecore