190 research outputs found

    The real-time measurement of football aerodynamic loads under spinning conditions

    Get PDF
    Aerodynamic effects play an important part in any sport where the ball experiences significant periods of free flight. This paper investigates the aerodynamic forces generated when a football is spinning quickly to generate swerve and more slowly to generate more erratic flight. The work reports on the application of an experimental method that measures the aerodynamic loads on a non-spinning, slowly spinning and fast spinning football, using a phase-locked technique so that orientation-dependent and steady ‘Magnus’ forces can both be determined. The results demonstrate that the orientation-dependent aerodynamic loads, widely seen in non-spinning data in the literature, surprisingly persist up to the highest spin rates reported. When predicting ball flight, it is generally assumed that at low spin rates a quasi-static assumption is acceptable, whereby forces measured on a non-spinning ball, as a function of ball orientation, apply for the spinning case. Above an arbitrary spin rate, the quasi-static assumption is replaced with the assumption of a steady ‘Magnus’ force that is a function of spin rate and ball speed. Using a flight model, the quasi-static assumption is shown to be only applicable for the lowest spin rates tested and the assumption of a steady ‘Magnus’ force only applicable at the highest spin rates. In the intermediate spin rates (20 -40 rpm), the persistence of the orientation effects is shown to have sufficient effect on the flight to be an important additional consideration

    Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications

    Get PDF
    Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 · 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals

    An oversimplification of physiological principles leads to flawed macroecological analyses

    Get PDF
    Macrophysiological analyses are useful to predict current and future range limits and improve our understanding of endotherm macroecology, but such analyses too often rely on oversimplifications of endothermic thermoregulatory and energetic physiology, which lessens their applicability. We detail some of the major issues with macrophysiological analyses based on the classic Scholander–Irving model of endotherm energetics in the hope that it will encourage other research teams to more appropriately integrate physiology into macroecological analyses

    Study of a Local Structure at the Interface between Corrosion Films and Carbon Steel Surface in Undersaturated COâ‚‚ Environments

    Get PDF
    Industries transporting CO2 gas-saturated fluids have infrastructures made of carbon steel. This is a good material with great mechanical properties but prone to corrosion and potential failure. Corrosion in sweet environments involves the formation of FeCO3 as a corrosion film, which is recognized to play a protective role under certain conditions. This work on the dissolution of corrosion films in sweet environments, under acidic and undersaturated conditions, demonstrates that the effects on the integrity of steel are far more significant than the damage observed on the surface of the corrosion film. Our results prove that dissolution of FeCO3 involved the presence of an amorphous phase, the intermediate formation of FeCl2 or FeCl+, and the presence of a phase with short distance atom–atom correlations. The amorphous phase was identified as a mixture of retained γ-Fe and Fe3C. Partially broken α-Fe and Fe3C structures were identified to prove the damage on the material, confirming the interface zone without evident damage on the corrosion film. Dissolution affected both the α-Fe and FeCO3, with the lattice [102̅] from the FeCO3 crystalline structure being the fastest to dissolve. The damage of steel at the molecular scale was evident at the macroscale with pit depths of up to 250 μm. The impact on the integrity of steel can be, therefore, more drastic than frequently reported in industrial operations of CO2 transport industries that use cleaning procedures (e.g., acid treatment, pigging) as part of their operational activities

    Formation mechanism of a nano ring of bismuth cations and mono-lacunary Keggin-type phosphomolybdate

    Get PDF
    A new hetero-bimetallic polyoxometalate (POM) nano ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano ring is formed via self -assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4]×22H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry (TG-DSC-MS). The formation of the nano ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo-K and the Bi-L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi-Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure

    Antibacterial properties of poly (N,N-dimethylaminoethyl methacrylate) obtained at different initiator concentrations in solution polymerization

    Get PDF
    Funding Information: The manuscript was financed from funds assigned for 14-148-1-21-28 statuary activity, by the Lodz University of Technology, Institute of Material Technologies of Textiles and Polymer Composites, Poland. Publisher Copyright: © 2022 The Authors.The samples of poly(N,N-dimethylaminoethyl methacrylate) were synthesized by radical polymerization. The amount of monomer and solvent was constant as opposed to an amount of initiator which was changing. No clear relationship between polymerization conditions and the molecular weight of the polymer was found, probably due to the branched configuration of produced polymer. Bactericidal interactions in all samples against Gram-positive and Gram-negative bacteria have been demonstrated. However, the observed effect has various intensities, depending on the type of bacteria and the type of sample.Peer reviewe

    Symptoms of anxiety and depression are related to cardiovascular responses to active, but not passive, coping tasks

    Get PDF
    Objective: Anxiety and depression have been linked to blunted blood pressure (BP) and heart rate (HR) reactions to mental stress tests; however, most studies have not included indices of underlying hemodynamics nor multiple stress tasks. This study sought to examine the relationships of anxiety and depression with hemodynamic responses to acute active and passive coping tasks. Methods: A total of 104 participants completed the Hospital Anxiety and Depression Scales and mental arithmetic, speech, and cold pressor tasks while BP, HR, total peripheral resistance, and cardiac output (CO) were assessed. Results: After adjustment for traditional risk factors and baseline cardiovascular activity, depression scores were negatively associated with systolic BP, HR, and CO responses to the mental arithmetic task, while anxiety scores were inversely related to the systolic BP response to mental arithmetic. Conclusion: High anxiety or depression scores appear to be associated with blunted cardiac reactions to mental arithmetic (an active coping task), but not to the cold pressor test or speech tasks. Future research should further examine potential mechanisms and longitudinal pathways relating depression and anxiety to cardiovascular reactivity

    cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently published data showed discrepancies beteween <it>P53 </it>cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers.</p> <p>Methods</p> <p>To this end, we analyzed 23 colorectal cancers for <it>P53 </it>mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry.</p> <p>Results</p> <p>We found <it>P53 </it>gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of <it>P53 </it>mRNA was present in samples with and without <it>P53 </it>mutations.</p> <p>Conclusion</p> <p>In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated <it>P53 </it>mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without <it>P53 </it>mutation (normal cells and cells showing <it>K-RAS </it>and/or <it>APC </it>but not <it>P53 </it>mutation) in samples presenting <it>P53 </it>mutation; 3, heterozygous or hemizygous mutations of <it>P53 </it>gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in <it>P53 </it>cDNA and DNA sequencing analysis.</p
    • …
    corecore