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E D I T O R I A L

An oversimplification of physiological principles leads to flawed 
macroecological analyses

In light of the rapidly changing climate, there is an urgent need to 
develop a mechanistic understanding of how physiological function-
ing mediates ecological patterns. Recently, there has been a spate 
of papers using analyses that scale up from a standard physiologi-
cal model, the Scholander–Irving model, to make predictions about 
range constraints on endothermic vertebrates (Buckley, Khaliq, 
Swanson, & Hof, 2018; Fristoe et al., 2015; Khaliq, Böhning‐Gaese, 
Prinzinger, Pfenninger, & Hof, 2017; Khaliq, Hof, Prinzinger, Böhning‐
Gaese, & Pfenninger, 2014). Here, we argue that oversimplifications 
of the Scholander–Irving model and the use of questionable data-
sets lead to questionable macrophysiological analyses. Many of 
these problems have been addressed elsewhere, directly and indi-
rectly (e.g., McKechnie, Coe, Gerson, & Wolf, 2017; Mitchell et al., 
2018), although the focus has largely been on the applicability of 
the Scholander–Irving model to warm environmental temperatures, 
which are often seen as more relevant to climate change. However, 
one specific aspect of the Scholander–Irving model, the assumption 
that energy expenditure of an endotherm below the thermoneutral 
zone (TNZ) can be described by basic Newtonian physics, has been 
used incorrectly in several papers. While not the only paper based 
on this assumption, the recent work by Buckley et al. (2018) reinvig-
orated discussions among physiologists about improper interpreta-
tions of the Scholander–Irving model. Our concerns are not new and 
have been voiced repeatedly in the past (Calder & Schmidt‐Nielsen, 
1967; King, 1964; Tracy, 1972), but many of these ideas seem to have 
been buried by time. Our goal here is to bring these concerns back to 
the forefront in the context of modern large‐scale macrophysiolog-
ical analyses, using the work of Buckley et al. (2018) as an example 
where relevant. We detail these ideas below, but King (1964) pro-
vided a scathing, yet technically accurate summary of our position 
over five decades ago: “The convenience of the Newtonian model 
as a heuristic or pedagogical device is readily apparent; but its use 
as an analytical instrument to reveal relatively small interspecific or 
seasonal adaptations in metabolism is a practice which is beset by 
many uncertainties, and which occasionally appears to encourage a 
Procrustean fitting of data.”

In practice, endothermic vertebrates pose significant challenges 
in large‐scale ecological analyses because the relationship between 
environmental conditions and functional energetics is mediated 
by complex metabolic and thermoregulatory control (Levesque, 

Nowack, & Stawski, 2016). At the heart of the issue is the reliance on 
the Scholander–Irving model (Scholander, Hock, Walters, Johnson, & 
Irving, 1950), a classic descriptive model of the relationship between 
ambient temperature and metabolic rate in strict homeotherms (i.e., 
species that maintain their body temperature within a somewhat 
narrow, although undefined range). Under this model, homeother-
mic endotherms are assumed to maintain a constant basal met-
abolic rate within the TNZ, a constant body temperature (Tb), and 
a constant thermal conductance. At ambient temperatures below 
the lower critical temperature (Tlc, the lower boundary of the TNZ), 
metabolic rate increases to compensate for increased heat loss and 
to maintain constant Tb. Importantly, these relationships vary with 
many factors, including season, so values measured during summer 
are inappropriate for analyses of cold tolerance during winter. While 
the Scholander–Irving model is important for descriptive analyses 
of energetic function in homeothermic endotherms, its direct ap-
plication to modeling environmental temperature thresholds for 
most endotherms is questionable (Levesque et al., 2016; Mitchell et 
al., 2018; Porter & Kearney, 2009). To generalize across large geo-
graphic scales, many analyses of endothermic energetics rely on a 
series of simplifying—and often unjustified—assumptions (reviewed 
by Mitchell et al., 2018). These simplifying assumptions are com-
mon, but an overreliance on them has inhibited a mechanistic un-
derstanding of global patterns in endothermic physiology. Relevant 
to the current discussion, the Scholander–Irving model predicts that 
a regression describing the relationship between metabolic rate 
and ambient temperatures below the Tlc extrapolates to an ambient 
temperature equal to Tb, if metabolic heat production was to reach 
zero (Scholander et al., 1950). This idea essentially requires that heat 
balance in endotherms follows Newton's laws of cooling, which may 
be a reasonable simplification in a small number of homeothermic 
species (usually mammals, but not birds), but is clearly not univer-
sal (King, 1964; McNab, 1979). There are numerous problems, both 
biological and computational, with this approach. First, a line fit 
through metabolic rate data rarely predicts Tb accurately, often over-
estimating it by as much as 10°C (Calder & Schmidt‐Nielsen, 1967; 
McNab, 1979). As a simple example, we calculated Tb using the rela-
tionship between metabolic rate and Tlc for the rock pocket mouse 
(Chaetodipus intermedius), one of the species included in Buckley et 
al. (2018). In the source paper (Bradley, Yousef, & Scott, 1975), Tb is 
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estimated at ~35°C and metabolic data are provided for two periods: 
January and April. By extrapolating the metabolic rate line to zero 
on the y‐axis, Tb is estimated at 37.9°C in January and 45.7°C in April 
(Figure 1). Clearly, the April value is unrealistic for a mammal. The 
inverse assumption that Tb can be used to predict metabolic rate is 
also problematic. For example, a difference in estimate of only 1°C 
(the black line vs. the gray line on the left panel of Figure 1) for the 
Tb of the four‐toed hedgehog (Atelerix albiventris) would lead to a dif-
ference in the metabolic rate at the cold range boundary (MRCRB) 
described by Buckley et al. (2018) of ~12%.

The Scholander–Irving model was groundbreaking in 1950 and 
has proven to be useful in shaping our basic understanding of en-
dothermic thermoregulation (Somero, 2013). However, this model 
requires that (a) thermal conductance below the TNZ is constant, (b) 
that endotherms maintain a relatively constant Tb, and (c) that Tlc can 
be estimated at a single value. The idea of a constant thermal con-
ductance has long been discounted (Tracy, 1972) and has repeatedly 
been shown to be unrealistic (e.g., Calder & Schmidt‐Nielsen, 1967; 
Noakes, Smit, Wolf, & McKechnie, 2013). Large‐scale analyses as-
suming Newtonian cooling are on shaky theoretical footing if the as-
sumption of constant thermal conductance is violated (King, 1964). 
Scholander et al. (1950) also assume that most mammals maintain Tb 
within ±1°C. While the data are not strictly analogous, such homeo-
thermy likely occurs in <30% of mammals with quality Tb data col-
lected during winter (Boyles et al., 2013). Even strictly homeothermic 
humans show a decrease of ~1°C during sleep (Wright, Badia, Myers, 
Plenzler, & Hakel, 1997) and Tb of marsupials and monotremes can 
be lowered by >8°C during normothermic resting. Further, describ-
ing endothermic Tb is surprisingly difficult, and the most commonly 
used metric, mean Tb, is usually a poor descriptor of regulated endo-
thermic Tb (Boyles, 2019; Hetem, Maloney, Fuller, & Mitchell, 2016). 

Finally, Tlc is often difficult to delineate at a single temperature using 
standard respirometry techniques, because no clear “breakpoint” in 
metabolic rate exists for many species (McNab, 1995), and Tlc may 
change seasonally (Kobbe, Nowack, & Dausmann, 2014). Even ig-
noring these theoretical concerns, extreme care must be taken in 
extrapolating from such variable and hard‐to‐describe values.

If one begins with the assumption the Scholander–Irving 
model is static and easily fit for all endotherms, data quality issues 
are nearly inevitable. Here, we use the dataset of Buckley et al. 
(2018) as an example to demonstrate how poor assumptions can 
be manifested in poor data quality. Specifically, we traced Tb and 
Tlc data for a subset of their dataset back to the original sources. As 
with previous critiques of the upper critical temperature in similar 
datasets (McKechnie et al., 2017), we found considerable variabil-
ity in the quality of the data used (Table 1). For example, many of 
the values presented were simply one value within the range of Tb 
or Tlc listed in the paper, but there was little consistency in how the 
value was chosen. This error stems from the assumption that endo-
therms maintain single, constant Tbs. Likewise, many older papers 
calculated Tlc by eyeballing lines through metabolic data and esti-
mating the intersection with basal metabolic rate. Therefore, the 
values are approximations (in many cases, they are different than 
what we would estimate from the same data). This error stems from 
the assumption of a single, unchanging Tlc. Two of us (JGB and DLL) 
independently judged the quality of the Tb and Tlc included in the 
first 20 mammal species included by Buckley et al. (2018) (exclud-
ing species with partial data and including only one species from a 
genus; Table 1). Of those 20 datasets, we classified five as appro-
priate for inclusion in the analysis (i.e., data generally followed the 
Scholander–Irving model, and Tb variation was relatively low). Note 
that even among these “appropriate” datasets, data for three of 

F I G U R E  1   Demonstration of the inherent limitations of using body temperature (Tb) and the lower critical temperature (Tlc) of the thermal 
neutral zone to calculate thermal conductance (C) when Tb and Tlc are poorly defined. Buckley et al. (2018) analyzed metabolic expansibility, 
which is the metabolic rate at the range boundary (MRRB) divided by basal metabolic rate (BMR). MRRB, and therefore ME, changes 
drastically depending on assumptions of Tb and Tlc used to calculate C. Data are for a rock mouse (Chaetodipus intermedius, left; Bradley et al., 
1975) and a hedgehog (Atelerix albiventris, right; McNab, 1980). In each case, black lines represent the Tb value used by Buckley et al and the 
various other lines represent plausible assumptions about Tb, assuming Tlc is constant. Dashed lines represent the extrapolation of Tb from 
the MR line assuming the animal is perfectly following Newton's Laws of Cooling. The inset in (a) is an expanded view encapsulating the Tlc 
and Tb of the rock mouse
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these five species were collected on zoo animals and may therefore 
not represent wild animals. We classified nine as marginal or ques-
tionable for inclusion in the dataset (i.e., Tb varied by 3°C or Tlc was 
difficult to determine). Ultimately, we classified six as inappropriate 
for inclusion (i.e., there were clear violations of the Scholander–
Irving model or the citation was incorrect and impossible to track). 
Importantly, authors of several of the original papers commented 
that either Tb or Tlc was difficult or impossible to establish for sev-
eral of these species (e.g., Arctictis binturong, McNab, 1995). Such 
datasets are too often compiled by ignoring biologically important 
variation and shoehorning incompatible data into a highly concep-
tualized model (King, 1964).

Finally, even if one accepts the assumptions of constant Tb, 
thermal conductance, and Tlc, there are analytical concerns with 
using these values to make predictions of organismal responses 
to conditions far beyond the measured values. For example, one 
could use these values to estimate energetic expenditure at tem-
peratures below the range empirically measured or to estimate 
range boundaries (Buckley et al., 2018; Root, 1988). However, 
such extrapolations are highly sensitive to data quality because 
they often extend far beyond the range of empirically measured 
data. Such extrapolations mean that small errors in estimating Tb 
or Tlc (which we reiterate are very hard to estimate and rarely a sin-
gle value) can lead to large errors in the estimated metabolic rates 
at cold temperatures. Again, we return to the dataset of Buckley 
et al. (2018) to demonstrate the scope of the possible error in ex-
trapolating far beyond the known data. In some species, the met-
abolic rate at the range boundary (MRRB) may vary by an order of 
magnitude depending on the chosen Tb value (Figure 1). At the 
extreme, a 1°C change in the Tb value chosen for these extrapo-
lations can lead to differences of over 400% in calculated meta-
bolic expansibility values for some species (although the median 
difference for all mammals included in the Buckley et al. dataset 
is 10%). Unfortunately, it is difficult to predict how these errors 
will be manifested in the interpretations of data. On one hand, we 
might predict that errors will be largest in high latitude species 
because the minimum environmental temperature is far below Tlc 
(i.e., the extrapolation is more extreme). On the other hand, the 
calculated thermal conductance value varies strongly when Tlc and 
Tb are close together, which is most likely to occur in tropical and 
subtropical species. The results of these analyses often seem to 
corroborate previous analyses using similar methodologies, but as 
King (1964) and others have recognized, oversimplifying assump-
tions of the Scholander–Irving model might result in overly simpli-
fied and generic results.

Although we strongly encourage the continued integration of 
physiological ecology and macroecology, we contend that oversim-
plification of physiological principles can lead to unreliable analyses. 
In addition, data quality is of utmost important in these analyses, 
especially in cases where analyses are highly sensitive to variance 
in input variables. Understanding the thermophysiology of endo-
therms relies on recognizing a number of caveats which have unfor-
tunately not been widely adopted by nonspecialists (Mitchell et al., Sp
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2018). While we recognize the importance of broader macroscale 
analyses, such studies would benefit from closer collaborations be-
tween macroecologists and physiological ecologists as each could 
help the other better understand the hidden nuances in their respec-
tive analyses and move toward a more comprehensive understand-
ing of global patterns.
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