24 research outputs found

    Aerosol absorption profiling from the synergy of lidar and sun-photometry : The ACTRIS-2 campaigns in Germany, Greece and Cyprus

    Get PDF
    © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.Peer reviewe

    An overview of the first decade of PollyNET : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    Get PDF
    © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 LicenseA global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.Peer reviewe

    Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project

    Get PDF
    Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project has been established in 2016. It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, ship-borne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data

    On the retrieval of lidar extinction profiles using two-stream and Raman techniques.

    Get PDF
    The Two-Stream technique employs simultaneous measurements performed by two elastic backscatter lidars pointing at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a number of Alfred-Wegener-Institute (AWI) campaigns dedicated to Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-pointing Airborne Mobile Aerosol Lidar (AMALi) was utilised. The aircraft flew over a vicinity of Ny Ålesund on Svalbard, where the zenith-pointing Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave the unique opportunity to retrieve the extinction profiles with a rarely used Two-Stream technique against a well established Raman technique. Both methods were applied to data obtained for clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign, and slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful comparison of both evaluation tools in different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has the potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the space borne CALIPSO lidar overpasses during the ASTAR 2007

    Microphysical and optical properties of precipitating drizzle and ice particles obtained from alternated lidar and in situ measurements

    Get PDF
    During the international ASTAR experiment (Arctic Study of Aerosols, Clouds and Radiation) carried out from Longyearbyen (Spitsbergen) from 10 May to 11 June 2004, the AWI (Alfred Wegener Institute) Polar 2 aircraft was equipped with a unique combination of remote and in situ instruments. The airborne AMALi lidar provided downward backscatter and Depolarisation ratio profiles at 532 nm wavelength. The in situ instrumental setup comprised a Polar Nephelometer, a Cloud Particle Imager (CPI) as well as a Nevzorov and standard PMS probes to measure cloud particle properties in terms of scattering characteristics, particle morphology and size, and in-cloud partitioning of ice/water content. The objective of the paper is to present the results of a case study related to observations with ice crystals precipitating down to supercooled boundary-layer stratocumulus. The flight pattern was predefined in a way that firstly the AMALi lidar probed the cloud tops to guide the in situ measurements into a particular cloud formation. Three kinds of clouds with different microphysical and optical properties have therefore been quasi-simultaneously observed: (i) water droplets stratiform-layer, (ii) drizzle-drops fallstreak and (iii) precipitating ice-crystals from a cirrus cloud above. The signatures of these clouds are clearly evidenced from the in situ measurements and from the lidar profiles in term of backscatter and Depolarisation ratio. Accordingly, typical lidar ratios, i.e., extinction-to-backscatter ratios, are derived from the measured scattering phase function combined with subsequent particle shapes and size distributions. The backscatter profiles can therefore be retrieved under favourable conditions of low optical density. From these profiles extinction values in different cloud types can be obtained and compared with the direct in situ measurements
    corecore