333 research outputs found
Study of dopants for radiation-resistant silicon Final report
Radiation effects on electrical properties of both aluminum and lithium doped bulk silico
Damage coefficients in low resistivity silicon
Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed
Recommended from our members
Estradiol-regulated MicroRNAs Control Estradiol Response in Breast Cancer Cells
Estradiol (E2) regulates gene expression at the transcriptional level by functioning as a ligand for estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). E2-inducible proteins c-Myc and E2Fs are required for optimal ERα activity and secondary estrogen responses, respectively. We show that E2 induces 21 microRNAs and represses seven microRNAs in MCF-7 breast cancer cells; these microRNAs have the potential to control 420 E2-regulated and 757 non-E2-regulated mRNAs at the post-transcriptional level. The serine/threonine kinase, AKT, alters E2-regulated expression of microRNAs. E2 induced the expression of eight Let-7 family members, miR-98 and miR-21 microRNAs; these microRNAs reduced the levels of c-Myc and E2F2 proteins. Dicer, a ribonuclease III enzyme required for microRNA processing, is also an E2-inducible gene. Several E2-regulated microRNA genes are associated with ERα-binding sites or located in the intragenic region of estrogen-regulated genes. We propose that the clinical course of ERα-positive breast cancers is dependent on the balance between E2-regulated tumor-suppressor microRNAs and oncogenic microRNAs. Additionally, our studies reveal a negative-regulatory loop controlling E2 response through microRNAs as well as differences in E2-induced transcriptome and proteome
Detection of Neptune-size planetary candidates with CoRoT data. Comparison with the planet occurrence rate derived from Kepler
[Abridged] Context. The CoRoT space mission has been searching for transiting
planets since the end of December 2006. Aims. We aim to investigate the
capability of CoRoT to detect small-size transiting planets in short-period
orbits, and to compare the number of CoRoT planets with 2 \leq R_p \leq 4
Rearth with the occurrence rate of small-size planets provided by the
distribution of Kepler planetary candidates (Howard et al. 2012). Methods. We
performed a test that simulates transits of super-Earths and Neptunes in real
CoRoT light curves and searches for them blindly by using the LAM transit
detection pipeline. Results. The CoRoT detection rate of planets with radius
between 2 and 4 Rearth and orbital period P \leq 20 days is 59% (31%) around
stars brighter than r'=14.0 (15.5). By properly taking the CoRoT detection rate
for Neptune-size planets and the transit probability into account, we found
that according to the Kepler planet occurrence rate, CoRoT should have
discovered 12 \pm 2 Neptunes orbiting G and K dwarfs with P \leq 17 days in six
observational runs. This estimate must be compared with the validated Neptune
CoRoT-24b and five CoRoT planetary candidates in the considered range of
planetary radii. We thus found a disagreement with expectations from Kepler at
3 \sigma or 5 \sigma, assuming a blend fraction of 0% (six Neptunes) and 100%
(one Neptune) for these candidates. Conclusions. This underabundance of CoRoT
Neptunes with respect to Kepler may be due to several reasons. Regardless of
the origin of the disagreement, which needs to be investigated in more detail,
the noticeable deficiency of CoRoT Neptunes at short orbital periods seems to
indirectly support the general trend found in Kepler data, i.e. that the
frequency of small-size planets increases with increasing orbital periods and
decreasing planet radii.Comment: 10 pages, 7 figures. Accepted for publication in A&
Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype
The Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (-/-) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype. Here we report the bone phenotype of these mice. MicroCT and static histomorphometric analyses at 20 weeks showed the distal femur of Lnk-/- mice to have significantly higher bone volume fraction and trabecular number compared to wild-type (WT) mice. Notably, despite a significant increase in the number of osteoclasts (OC), and decreased bone formation rate in Lnk-/- mice compared to WT mice, Lnk-/- mice demonstrated a 2.5-fold greater BV/TV suggesting impaired OC function in vivo. Additionally, Lnk-/- mouse femurs exhibited non-significant increases in mid-shaft cross-sectional area, yet increased periosteal BFR compared to WT femurs was observed. Lnk-/- femurs also had non-significant increases in polar moment of inertia and decreased cortical bone area and thickness, resulting in reduced bone stiffness, modulus, and strength compared to WT femurs. Of note, Lnk is expressed by OC lineage cells and when Lnk-/- OC progenitors are cultured in the presence of TPO, significantly more OC are observed than in WT cultures. Lnk is also expressed in osteoblast (OB) cells and in vitro reduced alkaline phosphatase activity was observed in Lnk-/- cultures. These data suggest that both direct effects on OB and OC as well as indirect effects of MK in regulating OB contributes to the observed high bone mass. J. Cell. Biochem. 118: 2231-2240, 2017
Ecology and diversity of culturable fungal species associated with soybean seedling diseases in the Midwestern United States
Aims: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence.
Methods and Results: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species.
Conclusion: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species.
Significance and Impact of the Study: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause
Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function
Networking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)–derived macrophages. OMs, identified as CD45+F4/80+ cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell–associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase–positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function
Conjugation with L, L-diphenylalanine Self-Assemblies Enhances In Vitro Antitumor Activity of Phthalocyanine Photosensitizer
We present the synthesis and characterization of new peptide conjugates obtained by hierarchical co-assembly of L,L-diphenylalanine (FF) and zinc phthalocyanine complexes (ZnPc) in water. Self-assembly capabilities under defined conditions were investigated by scanning electron microscopy, and photophysical properties were evaluated using UV-Vis and fluorescence spectroscopy. AFM observations demonstrated that these ZnPcs form different highly ordered arrays on the crystalline faces of the FF microplates and that surface roughness significantly changes with the presence of differently substituted phthalocyanine units. XRD assays showed that the overall molecular packing of the conjugates is organized according to a hexagonal symmetry, with ZnPcs hosted in the interstices of the peptide phase. In vitro photodynamic studies were conducted on human breast cancer MCF-7 cells to investigate both cellular uptake and cytotoxicity. It was shown that FF self-assemblies are not toxicity and enhance accumulation of ZnPc in MCF-7 cells, improving apoptotic cell death upon irradiation. Our findings demonstrate enhancement of ZnPc antitumor efficiency by FF conjugates and a proof-of-concept for new photosensitizer carriers based on peptide conjugates
Estradiol-regulated microRNAs control estradiol response in breast cancer cells.
Estradiol (E2) regulates gene expression at the transcriptional level by functioning as a ligand for estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta). E2-inducible proteins c-Myc and E2Fs are required for optimal ERalpha activity and secondary estrogen responses, respectively. We show that E2 induces 21 microRNAs and represses seven microRNAs in MCF-7 breast cancer cells; these microRNAs have the potential to control 420 E2-regulated and 757 non-E2-regulated mRNAs at the post-transcriptional level. The serine/threonine kinase, AKT, alters E2-regulated expression of microRNAs. E2 induced the expression of eight Let-7 family members, miR-98 and miR-21 microRNAs; these microRNAs reduced the levels of c-Myc and E2F2 proteins. Dicer, a ribonuclease III enzyme required for microRNA processing, is also an E2-inducible gene. Several E2-regulated microRNA genes are associated with ERalpha-binding sites or located in the intragenic region of estrogen-regulated genes. We propose that the clinical course of ERalpha-positive breast cancers is dependent on the balance between E2-regulated tumor-suppressor microRNAs and oncogenic microRNAs. Additionally, our studies reveal a negative-regulatory loop controlling E2 response through microRNAs as well as differences in E2-induced transcriptome and proteome
- …