641 research outputs found
Active Oxidation of a UHTC-Based CMC
The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation
Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility
The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability
Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations
We explore some of the effects that discreteness and two-body scattering may
have on N-body simulations with ``realistic'' cosmological initial conditions.
We use an identical subset of particles from the initial conditions for a
Particle-Mesh (PM) calculation as the initial conditions for a variety
PM and Tree code runs. We investigate the effect of mass resolution (the
mean interparticle separation) since most ``high resolution'' codes only have
high resolution in gravitational force. The phase-insensitive two--point
statistics, such as the power spectrum (autocorrelation) are somewhat affected
by these variations, but phase-sensitive statistics show greater differences.
Results converge at the mean interparticle separation scale of the lowest
mass-resolution code. As more particles are added, but the force resolution is
held constant, the PM and the Tree runs agree more and more strongly with
each other and with the PM run which had the same initial conditions. This
shows high particle density is necessary for correct time evolution, since many
different results cannot all be correct. However, they do not so converge to a
PM run which continued the fluctuations to small scales. Our results show that
ignoring them is a major source of error on comoving scales of the missing
wavelengths. This can be resolved by putting in a high particle density. Since
the codes never agree well on scales below the mean comoving interparticle
separation, we find little justification for quantitative predictions on this
scale. Some measures vary by 50%, but others can be off by a factor of three or
more. Our results suggest possible problems with the density of galaxy halos,
formation of early generation objects such as QSO absorber clouds, etc.Comment: Revised version to be published in Astrophysical Journal. One figure
changed; expanded discussion, more information on code parameters. Latex, 44
pages, including 19 figures. Higher resolution versions of Figures 10-15
available at: ftp://kusmos.phsx.ukans.edu/preprints/nbod
Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2
BACKGROUND: Circular chromosome conformation capture (4C) has provided important insights into three dimensional (3D) genome organization and its critical impact on the regulation of gene expression. We developed a new quantitative framework based on polymer physics for the analysis of paired-end sequencing 4C (PE-4Cseq) data. We applied this strategy to the study of chromatin interaction changes upon a 4.3 Mb DNA deletion in mouse region 4E2. RESULTS: A significant number of differentially interacting regions (DIRs) and chromatin compaction changes were detected in the deletion chromosome compared to a wild-type (WT) control. Selected DIRs were validated by 3D DNA FISH experiments, demonstrating the robustness of our pipeline. Interestingly, significant overlaps of DIRs with CTCF/Smc1 binding sites and differentially expressed genes were observed. CONCLUSIONS: Altogether, our PE-4Cseq analysis pipeline provides a comprehensive characterization of DNA deletion effects on chromatin structure and function
The mass function of the Las Campanas loose groups of galaxies
We have determined the mass function of loose groups of galaxies in the Las
Campanas Redshift Survey. Loose groups of galaxies in the LCRS range in mass
from M \sim 10^{12} {\rm M}_{\sun} to 10^{15} {\rm M}_{\sun}. We find that
the sample is almost complete for masses in the interval 5\cdot 10^{13}-8\cdot
10^{14} {\rm M}_{\sun}. Comparison of the observed mass function with
theoretical mass functions obtained from N-body simulations shows good
agreement with a CDM model with the parameters ,
and the amplitude of perturbations about
. For smaller masses the mass function of LCRS loose groups
flattens out, differing considerably from the group mass function found by
Girardi and Giuricin (2000) and from mass functions obtained by numerical
simulations.Comment: 9 pages, 7 figures, AA accepte
Heatshield for Extreme Entry Environment Technology (HEEET) for Missions to Saturn and Beyond
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017
Genetic determinants of co-accessible chromatin regions in activated T cells across humans.
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression
SOL PROBE AND METHOD OF OBTAINING MOISTURE,TEMPERATURE AND ROOT DISTRIBUTION OF A SOIL PROFILE
To provide a profile of simultaneous moisture, temperature and root density characteristics at different depths of soil, a soil probe is inserted in the soil with a viewing and camera section extending above the soil. Similarly, the probe provides a profile of simultaneous moisture, temperature and presence of molds, insects or other foreign matter in grain or similar media including liquid as well as solid granulated material. The portion of the probe that is in the soil or other media includes a source of light or light conveyance and windows which transmit an image of the soil at various depths along the length of the probe through light conductors for further transmission to the viewing and camera section. Liquid crystals sense the temperature of the soil at different locations and light conductors transmit color changes of the liquid crystals to the surface so that a profile may be compiled of moisture, temperature and root patterns by observation of the transmitted images in the viewing section. Viewed and photographic images can be com pared with known color calibration standards to ascertain in situ moisture and temperature conditions of the soil profile
Heatshield for Extreme Entry Environment Technology (HEEET) - Enabling Missions Beyond Heritage Carbon Phenolic
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017
- …
