3,238 research outputs found

    Connecting psychophysical performance to neuronal response properties I: Discrimination of suprathreshold stimuli

    Get PDF
    One of the major goals of sensory neuroscience is to understand how an organism's perceptual abilities relate to the underlying physiology. To this end, we derived equations to estimate the best possible psychophysical discrimination performance, given the properties of the neurons carrying the sensory code.We set up a generic sensory coding model with neurons characterized by their tuning function to the stimulus and the random process that generates spikes. The tuning function was a Gaussian function or a sigmoid (Naka-Rushton) function.Spikes were generated using Poisson spiking processes whose rates were modulated by a multiplicative, gamma-distributed gain signal that was shared between neurons. This doubly stochastic process generates realistic levels of neuronal variability and a realistic correlation structure within the population. Using Fisher information as a close approximation of the model's decoding precision, we derived equations to predict the model's discrimination performance from the neuronal parameters. We then verified the accuracy of our equations using Monte Carlo simulations. Our work has two major benefits. Firstly, we can quickly calculate the performance of physiologically plausible population-coding models by evaluating simple equations, which makes it easy to fit the model to psychophysical data. Secondly, the equations revealed some remarkably straightforward relationships between psychophysical discrimination performance and the parameters of the neuronal population, giving deep insights into the relationships between an organism's perceptual abilities and the properties of the neurons on which those abilities depend

    Awareness is the key to attraction: dissociating the tilt illusions via conscious perception

    Get PDF
    The tilt illusion is a compelling example of contextual influence exerted by an oriented surround on a target’s perceived orientation. A vertical target appears to be tilted away from a 15° oriented surround but appears to be tilted towards a 75° tilted surround. We tested the claim that these biases result from distinct sensory processes: a low-level repulsive process and a higher-level attractive process. If this claim were correct, then surround visibility would be a requirement for attraction, but it would not necessarily be a requirement for repulsion. Indeed, Motoyoshi and Hayakawa (2010) have already demonstrated that repulsion can survive removal of the surround from phenomenal awareness using adaptation-induced blindness. Here we sought to test this prediction by measuring the orientation biases in a parafoveally presented Gabor patch surrounded by tilted gratings after 20s adaptation. The adapting stimulus was an annularly windowed plaid composed of a vertical and horizontal jittering gratings. Observers were instructed to maintain fixation throughout the trial and report whether the Gabor appeared to be tilted clockwise or anticlockwise of vertical. They also had to indicate whether the surround was visible after adaptation. Post-adaptation biases were then compared to those obtained in a control experiment without dynamic adaptation. We found large repulsive biases induced by 15° oriented surrounds, but no attractive biases were induced by 75° tilted surrounds. This result shows that attractive effects do require visual awareness, and thereby provides robust evidence for the existence of two separate mechanisms mediating the phenomenology of the tilt illusions

    What Can Information Encapsulation Tell Us About Emotional Rationality?

    Get PDF
    What can features of cognitive architecture, e.g. the information encapsulation of certain emotion processing systems, tell us about emotional rationality? de Sousa proposes the following hypothesis: “the role of emotions is to supply the insufficiency of reason by imitating the encapsulation of perceptual modes” (de Sousa 1987: 195). Very roughly, emotion processing can sometimes occur in a way that is insensitive to what an agent already knows, and such processing can assist reasoning by restricting the response-options she considers. This paper aims to provide an exposition and assessment of de Sousa’s hypothesis. I argue information encapsulation is not essential to emotion-driven reasoning, as emotions can determine the relevance of response-options even without being encapsulated. However, I argue encapsulation can still play a role in assisting reasoning by restricting response-options more efficiently, and in a way that ensures which options emotions deem relevant are not overridden by what the agent knows. I end by briefly explaining why this very feature also helps explain how emotions can, on occasion, hinder reasoning

    Ethiopian agriculture has greater potential for carbon sequestration than previously estimated

    Get PDF
    More than half of the cultivation-induced carbon loss from agricultural soils could be restored through improved management. To incentivise carbon sequestration, the potential of improved practices needs to be verified. To date, there is sparse empirical evidence of carbon sequestration through improved practices in East-Africa. Here, we show that agroforestry and restrained grazing had a greater stock of soil carbon than their bordering pair-matched controls, but the difference was less obvious with terracing. The controls were treeless cultivated fields for agroforestry, on slopes not terraced for terracing, and permanent pasture for restrained grazing, representing traditionally managed agricultural practices dominant in the case regions. The gain by the improved management depended on the carbon stocks in the control plots. Agroforestry for 6-20 years led to 11.4 Mg ha(-1) and restrained grazing for 6-17 years to 9.6 Mg ha(-1) greater median soil carbon stock compared with the traditional management. The empirical estimates are higher than previous process-model-based estimates and indicate that Ethiopian agriculture has greater potential to sequester carbon in soil than previously estimated.Peer reviewe

    Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing

    Get PDF
    Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 µg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates

    Robust averaging protects decisions from noise in neural computations

    Get PDF
    An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging visual information, human observers tend to downweight or discount features that are relatively outlying or deviant (‘robust averaging’). Why humans adopt an integration policy that discards important decision information remains unknown. Here, observers were asked to judge the average tilt in a circular array of high-contrast gratings, relative to an orientation boundary defined by a central reference grating. Observers showed robust averaging of orientation, but the extent to which they did so was a positive predictor of their overall performance. Using computational simulations, we show that although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances performance in the presence of “late” noise, i.e. which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise arising in neural computations during decision-making

    The challenges faced in the design, conduct and analysis of surgical randomised controlled trials

    Get PDF
    Randomised evaluations of surgical interventions are rare; some interventions have been widely adopted without rigorous evaluation. Unlike other medical areas, the randomised controlled trial (RCT) design has not become the default study design for the evaluation of surgical interventions. Surgical trials are difficult to successfully undertake and pose particular practical and methodological challenges. However, RCTs have played a role in the assessment of surgical innovations and there is scope and need for greater use. This article will consider the design, conduct and analysis of an RCT of a surgical intervention. The issues will be reviewed under three headings: the timing of the evaluation, defining the research question and trial design issues. Recommendations on the conduct of future surgical RCTs are made. Collaboration between research and surgical communities is needed to address the distinct issues raised by the assessmentof surgical interventions and enable the conduct of appropriate and well-designed trials.The Health Services Research Unit is funded by the Scottish Government Health DirectoratesPeer reviewedPublisher PD
    corecore