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Abstract	10	

An	 ideal	observer	will	give	equivalent	weight	to	sources	of	 information	that	are	equally	reliable.	11	

However,	when	averaging	visual	 information,	human	observers	 tend	to	downweight	or	discount	12	

features	 that	 are	 relatively	 outlying	 or	 deviant	 (‘robust	 averaging’).	 	 Why	 humans	 adopt	 an	13	

integration	policy	that	discards	important	decision	information	remains	unknown.	Here,	observers	14	

were	 asked	 to	 judge	 the	 average	 tilt	 in	 a	 circular	 array	 of	 high-contrast	 gratings,	 relative	 to	 an	15	

orientation	boundary	defined	by	a	central	reference	grating.	Observers	showed	robust	averaging	of	16	

orientation,	 but	 the	 extent	 to	 which	 they	 did	 so	 was	 a	 positive	 predictor	 of	 their	 overall	17	

performance.	 Using	 computational	 simulations,	 we	 show	 that	 although	 robust	 averaging	 is	18	

suboptimal	for	a	perfect	integrator,	it	paradoxically	enhances	performance	in	the	presence	of	“late”	19	

noise,	 i.e.	which	corrupts	decisions	during	 integration.	 In	other	words,	robust	decision	strategies	20	

increase	the	brain’s	resilience	to	noise	arising	in	neural	computations	during	decision-making.	21	

	 	22	



Author	Summary	23	

Humans	often	make	decisions	by	averaging	information	from	multiple	sources.	When	all	the	sources	24	

are	equally	reliable,	they	should	all	have	equivalent	impact	(or	weight)	on	the	decisions	of	an	“ideal”	25	

observer,	i.e.	one	with	perfect	memory.	However,	recent	experiments	have	suggested	that	humans	26	

give	 unequal	 weight	 to	 sources	 that	 are	 deviant	 or	 unusual,	 a	 phenomenon	 called	 “robust	27	

averaging”.	 	Here,	we	use	computer	simulations	 to	 try	 to	understand	why	humans	do	this.	 	Our	28	

simulations	show	that	under	the	assumption	that	information	processing	is	limited	by	a	source	of	29	

internal	 uncertainty	 that	 we	 call	 “late”	 noise,	 robust	 averaging	 actually	 leads	 to	 improved	30	

performance.		Using	behavioural	testing,	we	replicate	the	finding	of	robust	averaging	in	a	cohort	of	31	

healthy	humans,	and	show	that	those	participants	that	engage	in	robust	averaging	perform	better	32	

on	the	task.		This	study	thus	provides	new	information	about	the	limitations	on	human	decision-33	

making.	 	34	



Introduction	35	

Decisions	about	 the	visual	world	often	 require	observers	 to	 integrate	 information	 from	multiple	36	

sources.	An	ideal	observer	will	give	each	source	a	weight	that	is	proportional	to	its	reliability.	Thus,	37	

where	all	sources	are	equally	trustworthy,	the	best	policy	is	simply	to	average	the	available	features	38	

or	decision	information.	For	example,	a	decision	about	which	fruit	to	buy	at	the	supermarket	might	39	

involve	averaging	the	estimated	size	and	colour	of	the	produce,	or	a	wager	about	which	football	40	

team	will	win	might	be	made	after	averaging	the	speed	and	skill	of	all	the	players	on	a	team	[1].			41	

	42	

Previous	 studies	 have	 investigated	 how	 humans	 average	 perceptual	 information	 by	 presenting	43	

participants	with	array	composed	of	multiple	visual	elements	and	asking	them	to	report	the	mean	44	

size,	colour	or	shape	of	the	items	displayed	[2-6].	Interestingly,	recent	reports	suggest	that	human	45	

averaging	judgments	do	not	resemble	those	of	an	ideal	observer	[7-10].	Rather,	when	averaging,	46	

humans	tend	to	downweight	or	discount	visual	features	that	are	unusual	or	outlying	with	respect	47	

to	 the	 distribution	 of	 features	 occurring	 over	 recent	 trials	 (“robust	 averaging”).	 Haberman	 and	48	

Whitney	first	showed	that	observers	discount	emotional	deviants	when	averaging	the	expression	in	49	

human	faces	[7].	Subsequently,	de	Gardelle,	Summerfield	and	colleagues	provided	evidence	that	50	

observers	discount	outlying	colour	or	shape	values	during	averaging	of	features	in	a	multi-element	51	

array	[8,	9].	Control	analyses	ruled	out	the	possibility	that	the	observed	effect	was	an	artefact	of	52	

hardwired	nonlinearities	in	feature	space.	Together,	these	studies	suggest	that	humans	are	“robust	53	

averagers”,	overweighting	inliers	relative	to	outliers	rather	than	giving	equal	weight	to	all	elements	54	

(although	see		[11]	for	a	failure	to	replicate	this	finding	using	a	2-alternative	forced	choice	averaging	55	

task).	56	

	57	



According	to	a	widely-accepted	framework	with	its	roots	in	Bayesian	decision	theory	[1,	12],	robust	58	

averaging	is	suboptimal.	Intuitively,	robust	averaging	discards	information	about	the	stimulus	array,	59	

and	should	thus	reduce	performance	relative	to	a	policy	that	integrates	the	stimulus	feature	values	60	

evenly.	 Why,	 then,	 do	 humans	 give	 more	 weight	 to	 inliers	 than	 outliers	 during	 integration	 of	61	

decision	 information?	 	 Here,	 we	 tackled	 this	 question	 using	 psychophysical	 testing	 of	 human	62	

observers	and	computational	simulation.	We	asked	participants	to	average	the	orientation	(tilt)	in	63	

a	circular	array	of	gratings,	relative	to	a	central	reference	grating	that	either	(i)	remained	the	same	64	

or	(ii)	varied	in	a	trial-wise	fashion	over	a	block	of	trials.	This	latter	manipulation	allowed	us	to	test	65	

whether	 robust	 averaging	 is	 still	 observed	even	when	 the	distribution	of	 sensory	 information	 is	66	

uniform	around	the	circle	and	varies	randomly	from	trial.	Using	this	approach,	we	show	that	human	67	

robust	averaging	can	be	conceived	of	as	a	policy	that	rapidly	allocates	limited	resources	(gain;	see	68	

equation	 2	 below)	 to	 items	 that	 are	 closest	 to	 the	 category	 boundary	 (or	 indifference	 point).	69	

Although	this	policy	is	suboptimal	in	the	absence	of	noise,	it	has	a	surprising	protective	effect	on	70	

decisions	that	are	corrupted	by	“late”	noise	arising	during	or	beyond	information	integration.		71	

	72	

Our	manuscript	is	organised	as	follows.	We	begin	by	describing	the	behaviour	of	a	cohort	of	human	73	

observers	performing	 the	orientation	averaging	 task.	Next,	we	describe	a	 simple	psychophysical	74	

model	in	which	feature	values	(tilt,	relative	to	a	reference	value)	are	transformed	nonlinearly	before	75	

being	averaged	to	form	a	decision	variable.	This	variable	is	corrupted	with	“late”	(post-averaging)	76	

noise	and	then	used	to	determine	model	choices.		This	model	accounts	better	for	human	behaviour	77	

(including	observed	robust	averaging)	than	a	rival	account,	based	on	an	ideal	observer,	that	replaces	78	

the	initial	nonlinear	step	with	a	purely	linear	multiplicative	transformation.	Next,	we	use	simulations	79	

to	 explore	 the	 properties	 of	 this	model.	We	 show	 that	 as	we	 increase	 late	 noise,	 a	model	 that	80	

engages	in	robust	averaging	comes	to	outperform	the	linear	model,	i.e.	achieves	higher	simulated	81	



choice	accuracy.	Finally,	we	return	to	the	human	data,	and	show	that	for	both	model	and	humans,	82	

the	use	of	a	robust	averaging	strategy	is	a	positive	predictor	of	decision	accuracy,	in	particular	under	83	

high	estimated	late	noise.	84	

	85	

Results	86	

Human	 participants	 (N	 =	 24)	 took	 part	 in	 two	 psychophysical	 testing	 sessions	 separated	 by	87	

approximately	one	week.	On	each	of	2048	trials,	they	viewed	an	array	of	8	high-contrast	gratings	88	

presented	in	a	ring	around	a	single	central	(reference)	grating	(Fig.	1).		The	grating	orientations	were	89	

drawn	 from	 a	 single	 Gaussian	 distribution	 with	 mean	 µ	Î	 {-20°,	 -10°,	 10°,	 20°}	 and	 standard	90	

deviation	s	Î	 {8°,	 16°}	 relative	 to	 the	 reference.	 Their	 task	was	 to	 report	whether	 the	average	91	

orientation	in	the	array	was	clockwise	(CW)	or	counterclockwise	(CCW)	of	the	central	grating.	The	92	

reference	grating	was	drawn	uniformly	and	randomly	from	around	the	circle,	and	varied	on	either	93	

a	trial-by-trial	 (variable	reference)	or	block-by-block	 (fixed	reference)	 fashion.	Fixed	and	variable	94	

reference	 conditions	 occurred	 in	 different	 sessions	 whose	 order	 was	 counterbalanced	 over	95	

participants.		Fully	informative	feedback	was	administered	on	every	trial.	96	

	97	

Fig.	1.	Schematic	demonstration	of	the	stimulus	array	98	

The	task	was	to	report	whether	the	average	orientation	of	the	outer	ring	of	gratings	fell	clockwise	99	

or	counterclockwise	of	the	orientation	of	the	central	(reference)	grating.			100	

	101	

Human	behaviour	102	

Mean	accuracy	and	standard	errors	of	mean	(S.E.M.)	for	the	human	participants	(lines)	are	shown	103	

in	Fig.	2.	Participants	responded	more	slowly	when	the	orientation	mean	approached	the	reference	104	

(main	effect	of	|µ|:	F1,20	=	47.14	p	<	0.0001)	and	when	the	orientation	variance	 increased	(main	105	



effect	of	s:	F1,20	=	6.84,	p	=	0.017).	They	also	made	more	errors	for	lower	values	of	|µ|	(F1,20	=	397.1,	106	

p	<	0.0001)	and	higher	values	of	s	(F1,20		=	116.1,	p	<	0.0001).	Directly	comparing	the	low	|µ|	low	s	107	

condition	(‘low-low’)	to	the	high	|µ|	high	s	condition	(‘high-high’),	participants	made	more	errors	108	

and	are	slower	under	high-high	condition	(accuracy:	F1,20		=	48.53,	p	<	0.001;	RT:	F1,20		=	20.67,	p	<	109	

0.001)	 even	 though	 the|µ|	 to	s	 ratio	 is	 identical	 in	 these	 two	 conditions.	 This	 result	 replicates	110	

previous	findings	[8].	111	

	112	

Fig.	2.	Model	and	human	data.	113	

Mean	accuracy	and	the	standard	error	of	mean	of	human	(grey	lines)	and	model	(green	dots)	for	114	

high	and	low	variance	conditions,	with	low	mean	(i.e.	orientation	close	to	the	reference;	light	grey	115	

lines)	and	high	mean	(dark	grey	lines).			Panel	A	shows	performance	in	the	fixed	reference	session,	116	

and	the	panel	B	shows	the	variable	reference	condition.		117	

	118	

As	expected,	participants	were	overall	 faster	 (F1,20	 =	64.4,	p	<	0.0001)	and	more	accurate	 (F1,20	=	119	

89.95,	p	<	0.0001)	in	the	fixed	reference	than	variable	reference	condition.	An	interaction	between	120	

mean	and	session	was	observed	for	both	RT	(F1,20		=	9.63,	p	<	0.001)	and	accuracy	(F1,20		=	5.83,	p	=	121	

0.025)	indicated	that	the	cost	incurred	by	lower	values	of	µ	was	greater	under	the	fixed	than	variable	122	

reference	condition.	No	interactions	between	session	and	feature	variance	were	observed.	There	123	

was	a	significant	interaction	for	both	accuracy	(F1,20	=	4.18,	p	=	0.41)	and	RT	(F1,20	=	8.06,	p	=	0.01)	124	

with	sessions	for	the	low-low	and	the	high-high	condition,	showing	that	the	relative	performance	125	

cost	for	the	high-high	condition	was	lower	under	the	variable	reference	condition.	These	findings	126	

indicate	 that	 our	 manipulation	 of	 fixed	 vs.	 variable	 reference	 successfully	 influenced	 human	127	

categorisation	performance,	and	that	µ	and	s	have	comparable	impact	on	accuracy	and	RT	to	that	128	



described	in	previous	studies	[8,	9].	The	same	results	were	obtained	when	this	analysis	was	carried	129	

out	on	d’	rather	than	%	correct	values	(see	Fig.	S1,	and	Table	S1).	130	

	131	

Next,	to	probe	for	robust	averaging,	we	measured	the	influence	that	each	feature	carried	on	the	132	

decision,	as	a	function	of	its	angle	relative	to	the	reference	(see	methods).	Fig.	3A	shows	the	average	133	

regression	coefficient	(weight)	associated	with	each	of	8	bins	of	the	feature	values	(i.e.	orientations	134	

relative	to	reference)	for	the	session	with	fixed	reference	(red	line)	and	the	session	with	variable	135	

reference	(green	line).	The	shaded	area	shows	the	standard	error	of	the	mean	across	observers.	We	136	

first	 compared	 the	 coefficients	with	a	 factorial	ANOVA,	 crossing	 the	 factors	of	 session	 (fixed	vs.	137	

variable	reference)	and	bin.		Consistent	with	the	accuracy	data	above,	this	yielded	a	main	effect	of	138	

session	(F1,20	=	59.54,	p	<	0.001).	However,	there	was	also	a	main	effect	of	bin	(F2.02,40.37=	6.23,	p	=	139	

0.004)	with	no	 interaction	between	 these	 factors	 (p	 =	 0.31).	Next,	 for	 each	 session,	we	directly	140	

compared	the	weights	associated	with	(i)	the	four	inlying	bins	(bin	3,	4,	5,	6]	and	(ii)	the	four	outlying	141	

bins	 (bin	1,	2,	7,	8].	 	 In	both	sessions,	participants	gave	more	weight	 to	 those	samples	 falling	 in	142	

inlying	than	outlying	bins	(fixed	reference:	t20	=	7.8,	p	<	0.0001;	variable	reference:	t20	=	6.3,	p	<	143	

0.0001).		In	other	words,	under	both	fixed	and	variable	reference,	participants	displayed	a	pattern	144	

of	behaviour	consistent	with	a	“robust	averaging”	policy	for	orientation.	145	

	146	

Fig.	3.	Parameter	estimates	of	orientation	of	each	grating	relative	to	the	reference.	147	

The	y-axis	shows	parameter	estimates	for	a	probit	regression	in	which	the	angles	of	orientation	of	148	

each	grating	(relative	to	the	reference)	were	used	to	predict	choice.		Angles	were	tallied	into	8	bins,	149	

from	most	negative	 to	most	positive	 relative	 to	 the	 reference,	 so	 that	each	parameter	estimate	150	

shows	the	relative	weight	given	to	a	particular	portion	of	feature	space.	The	x-axis	shows	the	bin	151	

center	of	each	bin.	The	inverted-U	shape	of	the	curve	is	a	signature	of	robust	averaging.	Shaded	152	



areas	are	the	standard	error	of	mean.	(A)	Weighting	functions	estimated	using	human	choices	(B)	153	

Weighting	functions	for	recreated	model	choices	using	the	best	fitting	parameters	from	the	power	154	

model	using	the	best	fitting	parameters	from	human	data.	(C)	Weighting	functions	for	simulated	155	

model	choice	under	a	case	in	which	angles	are	linearly	mapped	onto	𝐷𝑉.	156	

	157	

Model	fitting	158	

We	 fit	 our	 data	 with	 a	 simple	 psychophysical	 model	 (power	 model;	 see	 methods).	 Each	 array	159	

element	i	was	characterised	by	a	feature	value	𝑋$ 	that	was	proportional	to	its	orientation,	recoded	160	

to	be	relative	to	the	reference	(in	radians,	i.e.	in	the	range	-0.79rad	to	0.79rad	corresponding	to	-45°	161	

to	+45°.	The	model	computes	a	decision	value	(𝐷𝑉)	by	transforming	𝑋	with	a	nonlinear	function	162	

parameterised	by	an	exponent	𝑘,	and	summing	the	resulting	values:	163	

𝐷𝑉 = 𝑠𝑖𝑔𝑛(𝑋$)
-

$./

⋅ 𝑋$ 1	164	

The	 functions	mapping	𝑋	onto	𝐷𝑉	under	different	 levels	of	𝑘	(red	 to	blue	 lines	 respectively)	 are	165	

shown	in	Fig.	4A.	For	the	special	case	𝑘	=	1,	the	transfer	function	is	linear,	and	DV	is	equivalent	to	166	

the	simple	sum	of	𝑋$;	this	is	the	rule	used	by	the	experimenter	to	determine	feedback.		167	

	168	

Fig.	4.	Mapping	sensory	inputs	to	decision	values.			169	

(A)	Left	panel:	the	different	functions	that	map	feature	values	(angles	relative	to	the	reference	in	170	

radians)	to	decision	values	for	the	power	model.	Coloured	lines	represent	functions	for	different	171	

values	of	𝑘	from	0.1	to	2,	with	low	values	represented	by	reddish	lines	and	high	values	represented	172	

by	bluish	lines.		Right	panel:	the	equivalent	functions	for	the	equivalent	gain	linear	model.	In	the	left	173	

and	right	panels,	models	with	equivalent	gain	are	represented	with	lines	of	equivalent	colour.	(B)	174	



The	best	fitting	𝑘	values	(left	panel)	and	s	values	(right	panel)	in	human	for	fixed	reference	(x-axis)	175	

and	variable	reference	session	(y-axis).	176	

	177	

Next,	we	calculated	choice	probabilities	by	passing	the	𝐷𝑉	through	a	sigmoidal	choice	function	with	178	

the	 inverse-slope	 (s;	 see	 methods).	 	 Varying	 the	 inverse-slope	 of	 the	 choice	 function	 is	179	

approximately	equivalent	to	assuming	that	decision	values	are	corrupted	with	varying	levels	of	zero-180	

mean	Gaussian	noise	at	a	post-averaging	stage	(e.g.	“late”	noise),	with	high	values	of	𝑠	(shallower	181	

slope)	implying	more	late	noise	and	thus	lower	sensitivity.	This	model	allowed	us	to	obtain	best-182	

fitting	values	of	𝑘	and	𝑠	for	each	participant	in	both	fixed	and	variable	reference	conditions,	using	183	

maximum	likelihood	estimation.	Values	of	𝑘	and	𝑠	for	each	participant	are	plotted	in	Fig.	4B.			184	

	185	

We	observed	that	values	for	the	 inverse-slope	of	the	choice	function	𝑠	were	steeper	 in	the	fixed	186	

than	variable	reference	condition	(t20	=	4.27,	p	<	0.001),	consistent	with	lower	performance	in	the	187	

variable	reference	condition.	This	is	likely	to	reflect	the	additional	processing	cost	for	recoding	raw	188	

orientations	relative	to	the	reference	when	the	latter	changed	from	trial	to	trial.	Values	of	𝑘	did	not	189	

differ	between	the	fixed	and	variable	reference	conditions	(p	=	0.93),	but	for	both	conditions,	best-190	

fitting	values	of	𝑘	were	lower	than	1	(fixed:	t20	=	9.41,	p	<	0.0001;	variable:	t20	=	3.15,	p	=	0.005).	191	

This	 is	consistent	with	a	compression	of	 those	array	elements	 that	were	outlying	relative	 to	 the	192	

reference,	i.e.	a	robust	averaging	policy.	To	confirm	that	the	model	was	showing	robust	averaging,	193	

we	 then	created	model	 choices	under	 the	best-fitting	parameterisation,	by	 randomly	 simulating	194	

binary	 choices	 from	 the	 estimates	 of	 choice	 probability	 using	 the	 best-fitting	model.	 Using	 this	195	

approach,	we	were	able	to	recreate	the	pattern	of	accuracy	(Fig.	2,	dots)	and	weighting	profile	(Fig.	196	

3B)	 displayed	 by	 human	participants.	 In	 other	words,	 the	model	 displayed	 comparable	 costs	 to	197	

humans	in	each	condition,	and	exhibited	the	same	tendency	to	engage	in	robust	averaging.			198	



	199	

In	the	model,	robust	averaging	occurs	because	of	the	nonlinear	form	of	the	function	that	maps	𝑋,	200	

the	 feature	 values,	 onto	𝐷𝑉 ,	 the	 decision	 values,	 which	 is	 steeper	 in	 the	 centre	 (near	 0)	 and	201	

shallower	at	the	edges	(far	from	0).	As	a	control,	we	tested	the	weighting	profile	observed	when	𝑋	202	

is	linearly	mapped	onto	𝐷𝑉.	This	confirmed	that	a	linear	transformation	of	feature	values	did	not	203	

give	rise	to	robust	averaging	(fig.	3C).	Parameter	recovery	simulation	(see	methods)	confirmed	that	204	

𝑘	and	𝑠	were	fully	identifiable	for	the	power	model	(shown	by	Fig.	S2	that	actual	parameters	and	205	

recovered	parameters	fall	close	to	the	identity	line).		206	

	207	

As	 thus	described,	our	model	assumes	no	noise	 in	 the	encoding	of	each	 individual	grating.	 	This	208	

assumption	follows	from	the	fact	that	 in	the	experiment,	each	individual	array	element	(grating)	209	

was	 presented	 with	 full	 contrast	 and	 thus	 the	 orientation	 should	 have	 been	 relatively	 easy	 to	210	

perceive.	 	 For	 example,	 using	 a	 similar	 stimulus	 array,	 one	 report	 finds	 estimates	 of	 equivalent	211	

encoding	noise	in	the	range	of	2-6°	when	contrast	values	exceed	about	0.3	[13].		Moreover,	although	212	

we	additionally	randomised	the	latency	with	which	arrays	were	presented	at	4	levels	(250,	500,	750	213	

or	1000	ms).	Long	presentation	latencies	led	to	longer	RT	on	correct	choices	(F2.47,56.73	=	8.65,	p	<	214	

0.001),	but	this	factor	had	no	influence	on	accuracy	(p	=	0.42;	fig.	S3).	 	Nevertheless,	to	test	this	215	

explicitly,	we	fit	a	variant	of	the	model	in	which	feature	values	𝑋$ 	were	corrupted	by	“early”	noise	216	

alone	–	a	source	of	variance	that	arises	before	any	nonlinearity	and	averaging,	that	corrupts	each	217	

tilt	independently	relative	to	the	reference	(see	methods).	This	model	failed	to	capture	the	robust	218	

averaging	effect	because	the	introduction	of	early	noise	with	power	transformation	would	lead	to	219	

a	more	stochastic	choice	pattern.	The	same	feature	value	that	are	corrupted	by	random	early	noise	220	

would	sometimes	drive	the	decision	to	one	choice	and	sometimes	to	the	other	choice.	We	formally	221	

compared	this	“Early	noise	only”	model	to	our	“Late	noise	only”	model,	 i.e.	 to	that	with	𝑘	and	𝑠	222	



described	above,	finding	that	it	fits	the	conditionwise	accuracy	worse	in	both	the	fixed	reference	223	

session	(t20	=	8.06,	p	<	0.0001)	and	the	variable	reference	session	(t20	=	7.97,	p	<	0.0001;	Fig.	S4C).	224	

	225	

Our	model	describes	the	computations	that	underlie	human	choices	in	a	simplified	fashion,	using	226	

power-law	 transducers.	 However,	 these	 functions	 are	 intended	 to	 describe	 the	 output	 of	227	

computations	that	occur	at	individual	neurons.	To	demonstrate	how	transfer	functions	of	this	form	228	

might	arise,	we	additionally	simulated	decisions	with	a	population	coding	model,	in	which	features	229	

are	processed	by	 a	 bank	of	 simulated	neurons	with	 tuning	 functions	of	 variable	 amplitude	 (see	230	

methods).	By	assuming	the	height	of	tuning	functions	for	neurons	coding	inliers	or	outliers	can	vary,	231	

we	showed	in	fig.	S5	that	we	can	recreate	the	family	of	transfer	functions	shown	in	fig.	4A.	Given	232	

that	we	could	recreate	the	power-law	transducer	functions	using	this	model,	it	is	unsurprising	that	233	

the	population	coding	model	was	also	able	 to	 recreate	 the	pattern	of	accuracy	 (fig.	S6)	and	the	234	

weighting	profile	(fig.	S7)	displayed	by	human	participants.	However,	we	chose	to	model	our	data	235	

with	 the	 simpler,	 psychophysical	 variant	 of	 the	 model,	 because	 it	 does	 not	 require	 additional	236	

assumptions	 that	 are	 not	 germane	 to	 our	main	 points	 (e.g.	 the	 range	 of	 tuning	widths	 for	 the	237	

neuronal	population).		238	

	239	

Understanding	drivers	of	model	performance	240	

Next,	turning	to	our	main	point,	we	used	simulation	to	understand	how	model	performance	varied	241	

under	different	levels	of	late	noise	and	degree	of	robust	averaging	by	exploring	different	values	of	242	

𝑠	and	𝑘.	Model	performance	 (simulated	decision	accuracy)	 for	 the	power	model	under	different	243	

values	of	𝑘	and	𝑠	is	shown	in	Fig.	5A	(left	panel).	As	expected,	performance	worsens	with	increasing	244	

late	noise	(bluish	lines).	However,	performance	also	depends	on	𝑘.	When	late	noise	𝑠	is	higher,	the	245	

model	 performs	better	with	 lower	 values	 of	𝑘	(i.e.	 those	 that	 yield	 robust	 averaging).	 	Notably,	246	



performance	is	best	with	values	of	𝑘	that	are	lower	than	1,	i.e,	under	a	policy	that	distorts	feature	247	

information	rather	than	encoding	the	feature	values	linearly.	248	

	249	

Fig.	5.	Model	accuracy.		250	

(A)	Simulated	model	accuracy	for	the	power	model	under	different	values	of	exponent	𝑘	(bottom	x-251	

axis,	 corresponding	𝑔	is	 plotted	on	 the	 top	 x-axis)	 and	 late	 noise	 (𝑠;	 in	 a	 range	of	 0.05	 to	 5)	 in	252	

coloured	lines	with	reddish	(bluish)	lines	show	simulations	with	lowest	(highest)	late	noise.	The	black	253	

line	 is	 the	 accuracy	 of	 the	model	 when	 items	were	 allocated	with	 equivalent	 gain	 and	 equally	254	

integrated	 (𝑘 	=	 1)	 (B)	 After	 simulating	 model	 accuracy	 of	 the	 equivalent	 gain	 linear	 model,	255	

performance	difference	between	the	power	model	and	the	linear	model	is	shown	in	the	coloured	256	

surface.	Positive	values	(yellow-red)	show	parameters	where	the	nonlinear	model	performance	is	257	

higher	 than	equivalent	 linear	 variants,	 and	negative	 values	 (cyan-blue)	 show	 the	 converse.	 Best	258	

fitting	𝑘	and	𝑠	for	each	subject	of	the	fixed	(dark	grey	dots)	and	variable	reference	session	(light	grey	259	

dots)	were	displayed	to	show	the	performance	gain	relative	to	using	linear	weighting	scheme.	260	

		261	

One	trivial	reason	why	model	performance	might	grow	as	𝑘	is	reduced	relates	to	the	scaling	of	the	262	

decision	values	𝐷𝑉	that	are	produced	when	𝑋$ 	is	transformed.	After	passage	through	the	sigmoidal	263	

choice	function,	larger	values	of	𝐷𝑉	will	yield	choice	probabilities	that	are	closer	to	0	or	1	and	thus	264	

increase	model	performance.	To	adjust	for	this,	we	first	calculated	the	scaling	of	the	decision	values	265	

that	resulted	from	each	transfer	function	parameterised	by	a	different	value	of	𝑘,	as	follows:	266	

	267	

𝑔 =
2

1 + 𝑘	268	



This	gain	normalisation	term	is	proportional	to	the	integral	of	the	absolute	value	of	the	curves	in	Fig.	269	

4A.	This	normalisation	thus	adjusts	for	the	expected	gain	(i.e.	proportional	increase	or	decrease	in	270	

𝐷𝑉)	that	would	be	incurred	by	the	nonlinear	transducer	(in	the	theoretical	case	in	which	there	is	a	271	

flat	distribution	of	features).		The	normalization	thus	allowed	us	to	compare	nonlinear	and	linear	272	

models	with	equivalent	gain.	Fig.	S8	shows	the	resulting	value	of	𝑔	for	each	corresponding	𝑘.	We	273	

then	 compared	 the	 performance	of	 the	model	 under	 each	 transfer	 function	with	 an	 equivalent	274	

linear	model,	in	which	decision	values	were	computed	under	𝑘	=	1	(no	compression)	but	rescaled	275	

by	𝑔.	 This	 is	 equivalent	 to	 assuming	 that	decisions	 are	 limited	by	a	 fixed	 resource	 (or	 gain),	 for	276	

example	an	upper	limit	on	the	aggregate	firing	rates	produced	by	a	population	of	neurons.		277	

	278	

Creating	this	family	of	yoked	linear	and	nonlinear	models	allowed	us	to	directly	assess	the	costs	and	279	

benefits	to	performance	of	different	values	of	𝑘	in	a	way	that	controlled	for	the	level	of	gain.	This	280	

can	be	seen	in	Fig.	5B,	where	we	plotted	the	difference	in	accuracy	between	the	linear	model	and	281	

a	power	model	that	is	matched	for	gain.		The	red	areas	in	lower	left	show	that	when	late	noise	is	282	

higher,	performance	benefits	when	the	model	engages	more	strongly	in	robust	averaging	(k	<	1).	In	283	

other	words,	a	policy	of	allocating	gain	to	inliers	rather	than	outliers	protects	decisions	against	late	284	

noise.			285	

	286	

At	first	glance,	this	effect	might	seem	counterintuitive.	Why	should	allocating	gain	preferentially	to	287	

one	portion	of	feature	space	prior	to	averaging	benefit	performance,	if	overall	gain	is	equated?		One	288	

way	of	thinking	about	the	difference	between	a	power	model	(with	parameter	𝑘)	and	a	linear	model	289	

with	equivalent	gain	𝑔	is	that	whereas	linear	model	allocates	gain	evenly	across	feature	space	(i.e.	290	

equivalently	to	inliers	and	outliers),	the	power	model	with	k	<	1	focusses	gain	on	those	items	that	291	

are	closest	to	the	category	boundary,	where	the	transfer	function	is	steepest.		Because	the	overall	292	



distribution	of	features	across	the	experiment	is	Gaussian	with	a	mode	close	to	the	boundary,	this	293	

means	that	the	power	model	allocates	gain	more	efficiently,	 i.e.	towards	those	features	that	are	294	

most	 likely	 to	 occur.	 We	 have	 previously	 described	 such	 “adaptive	 gain”	 phenomena	 in	 other	295	

settings	[14,	15].	296	

	297	

To	verify	this	contention,	we	repeated	our	simulation	with	a	new	simulated	set	of	input	values	X	298	

that	were	drawn	from	a	uniform	random	distribution	with	respect	 to	the	reference,	 rather	than	299	

using	the	Gaussian	distributions	of	tilt	values	that	were	viewed	by	human	observers.	This	simulation	300	

revealed	 no	 performance	 advantage	 for	 robust	 averaging.	 	 Rather,	 under	 uniformly	 distributed	301	

features	the	best	policy	was	to	avoid	the	nonlinear	step	and	simply	average	the	feature	values,	as	302	

predicted	by	the	ideal	observer	framework.	This	is	shown	in	Fig.	6,	where	best	performance	under	303	

the	lowest	late	noise	case	occurs	when	feature	values	are	equally	integrated.	Under	high	late	noise,	304	

values	of	𝑘	<	1	lead	to	relatively	better	performance	than	when	all	features	are	equally	integrated.		305	

However,	there	is	no	performance	gain	for	robust	averaging	compared	to	the	equivalent	gain	linear	306	

model,	meaning	that	unlike	in	fig.	5,	the	performance	gain	shown	in	fig.	6	is	purely	due	to	a	larger	307	

scaling	of	 input	 to	output	 values	under	𝑘	<	1.	 This	 is	 in	 fact	 confirmed	by	a	 separate	 sequential	308	

number	 integration	experiment	with	a	different	class	of	stimulus	 -	symbolic	numbers.	The	study	309	

showed	that	that	the	optimal	𝑘	values	under	high	 late	noise	 is	greater	than	1	since	the	stimulus	310	

were	drawn	from	a	uniform	distribution	[16].	311	

	312	

Fig.	6.	Model	accuracy	under	uniform	distributions.			313	

Panels	 A	 and	 B	 are	 equivalent	 to	 panel	 A	 and	 B	 for	 Fig	 5.	 	 However,	 here	 the	 simulations	 are	314	

performed	by	drawing	feature	values	from	uniform	random	distributions,	rather	than	those	used	in	315	

the	human	experiment.	316	



	317	

Linking	decision	policy	to	performance	318	

These	explorations	allow	us	to	make	a	new	and	counterintuitive	prediction	for	the	human	data.	If	319	

late	noise	is	high,	then	rather	than	hurting	decision	performance,	robust	averaging	should	help.		We	320	

tested	 this	 contention	 using	 an	 analysis	 approach	 based	 on	 multiple	 regression.	 	 For	 each	321	

participant,	we	split	trials	into	two	groups	(even	and	odd).	We	first	obtained	the	best-fitting	k	and	s	322	

parameters	 for	each	participant	using	even	trials.	Then,	using	multiple	 regression,	we	estimated	323	

multiplicative	coefficients	that	best	describe	the	relationship	between	the	best-fitting	parameters	324	

for	 each	 subject	 and	 performance	 on	 (left	 out)	 odd	 trials,	 separately	 for	 the	 fixed	 and	 variable	325	

reference	sessions:	326	

	327	

𝑐𝑜𝑟 = 𝛽9 +	𝛽/𝑘 +	𝛽;𝑠 + 𝛽<𝑠 ∗ 𝑘	328	

	 	 	 	 	 	 	 	 	 	 	 	 	329	

Where	cor	is	a	vector	of	mean	accuracies	(one	accuracy	for	each	subject	per	session),	and	𝑘	and	𝑠	330	

are	vectors	of	corresponding	best-fitting	parameters.		In	the	variable	reference	condition,	both	𝑘	331	

and	𝑠	were	significant	negative	predictors	of	performance	(𝑘:	𝛽/	=	-0.14,	t17	=	-2.51,	p	=	0.022,	95%	332	

CI	[-0.032	-0.26];	𝑠:	𝛽;	=	-0.041,	t17	=	-7.15,	p	<	0.001,	95%	CI	[-0.03	-0.052]).		In	other	words,	in	the	333	

variable	reference	condition,	where	late	noise	is	intrinsically	higher,	low	values	of	𝑘	led	to	enhanced	334	

performance	 across	 the	 human	 cohort.	 	 In	 the	 fixed	 reference	 session,	 neither	𝑘 	nor	 𝑠 	was	335	

significant	predictors	of	performance	(p	=	0.56	and	p	=	0.16	respectively),	but	their	interaction	was	336	

significant	 (𝛽< 	=	 -0.13,	 t17	 =	 -2.88,	 p	 =	 0.01,	 95%	 CI	 [-0.04	 -0.21]).	 In	 other	 words,	 in	 the	 fixed	337	

reference	condition,	predicted	performance	was	higher	under	lower	𝑘	only	for	those	participants	338	

with	higher	estimated	late	noise	𝑠.	These	findings	confirm	that	in	our	experiment,	robust	averaging	339	

conferred	a	benefit	on	performance	under	high	late	noise.	340	



	341	

Discussion	342	

Human	observers	have	previously	been	shown	to	be	“robust	averagers”	of	low-level	visual	features	343	

such	as	shape	and	colour	[8,	9],	and	even	of	high-dimensional	stimuli	such	as	faces	[7].		Here,	we	344	

add	to	these	earlier	findings,	describing	robust	averaging	of	the	tilt	of	a	circular	array	of	gratings.	345	

However,	the	focus	of	the	current	experiment	was	to	use	computational	simulations	to	understand	346	

why	humans	engage	 in	 robust	averaging.	 	We	describe	a	 simple	psychophysical	model	 in	which	347	

features	values	are	transformed	nonlinearly	prior	to	averaging.		This	model	assumes	the	decisions	348	

are	limited	by	a	fixed	resource,	and	that	gain	is	allocated	differentially	across	feature	space,	giving	349	

priority	to	inliers	–	those	features	that	fall	close	to	the	category	boundary.	Through	simulations,	we	350	

find	that	in	our	experiment,	this	relative	discounting	of	outliers	gives	a	boost	to	performance	when	351	

decisions	 are	 additionally	 corrupted	 by	 “late”	 noise,	 i.e.	 noise	 arising	 during,	 or	 beyond,	 the	352	

integration	of	information.	353	

	354	

Previously,	robust	averaging	has	been	considered	a	suboptimal	policy	that	incurs	an	unnecessary	355	

loss	by	discarding	relevant	decision	information	[17].	The	current	work	offers	a	new	perspective,	356	

suggesting	that	robust	averaging	is	a	form	of	bounded	rationality.		If	we	consider	an	observer	whose	357	

neural	computations	are	not	corrupted	by	late	noise,	it	is	true	that	robust	averaging	incurs	a	cost	358	

relative	to	perfect	averaging.	However,	here	we	consider	decisions	as	being	constrained	not	just	by	359	

sources	of	noise	that	are	external	to	the	observer,	or	that	arise	during	sensory	transduction,	but	360	

also	capacity	 limits	 in	human	 information	processing.	Processing	capacity	allows	a	multiplicative	361	

gain	to	be	applied	to	feature	values,	with	higher	gain	ensuring	that	feature	values	are	converted	to	362	

cumulative	 decision	 values	 that	 fall	 further	 from	 the	 category	 boundary	 (here,	 the	 reference	363	

orientation).	When	decision	values	are	further	from	the	category	boundary,	they	are	more	resilient	364	



to	“late”	noise,	which	might	otherwise	drive	them	to	the	incorrect	side	of	the	category	boundary,	365	

thereby	 forcing	 an	 error.	 However,	 when	 gain	 is	 limited,	 it	must	 be	 allocated	 judiciously.	 	 Our	366	

simulations	show	that	allocating	gain	to	stimuli	that	are	most	likely	to	occur	confers	a	benefit	on	367	

performance,	and	suggest	that	humans	may	adopt	a	robust	averaging	policy	in	order	to	maximise	368	

their	accuracy	on	the	task.	369	

	370	

One	longstanding	hypothesis	states	that	neural	systems	will	maximise	the	efficiency	of	information	371	

encoding	by	allocating	the	highest	resources	(e.g.	neurons)	to	those	features	that	are	most	likely	to	372	

occur	[18].		For	example,	enhanced	human	sensitivity	to	cardinal	angles	of	orientation	(those	close	373	

to	0°	and	90°)	may	reflect	the	prevalence	of	contours	with	this	angle	in	natural	scenes	[19].		Indeed,	374	

neural	 systems	 learning	 via	 unsupervised	methods	 will	 naturally	 learn	 to	 represent	 features	 in	375	

proportion	to	the	frequency	with	which	they	occur.	Here,	we	make	a	related	argument	for	neural	376	

gain	control.	The	efficiency	of	gain	control	allocation	depends	on	the	distribution	of	features	that	377	

occurs	in	the	local	environment.		Allocating	gain	to	features	that	are	rare	or	unexpected,	even	when	378	

they	are	more	diagnostic	of	the	category,	is	inefficient,	as	resources	are	“wasted”	in	feature	values	379	

that	 are	 highly	 unlikely	 to	 occur;	 whereas	 allocating	 gain	 to	 those	 features	 that	 occur	 most	380	

frequently	will	confer	the	greatest	benefit.	This	benefit,	however,	is	only	observable	when	decisions	381	

are	 corrupted	 by	 “late”	 noise,	 i.e.	 that	 arising	 beyond	 information	 averaging.	 This	 finding	 has	382	

important	implications	for	our	understanding	of	what	may	be	the	“optimal”	policy	for	performing	a	383	

categorisation	task.	The	ideal	observer	framework	allows	us	to	write	down	a	decision	policy	that	will	384	

maximise	accuracy	for	an	observer	that	is	limited	not	by	capacity	but	by	noise	arising	in	the	external	385	

environment.		Here,	we	show	an	example	where	the	policy	that	is	optimal	for	an	unbiased,	noiseless	386	

observer	is	not	the	one	that	maximises	accuracy	for	healthy	humans.	387	

	388	



The	 current	 study	 adds	 to	 an	 emerging	 body	 of	work	 that	 the	 human	 brain	may	 have	 evolved	389	

perceptual	 processing	 steps	 that	 squash,	 compress	or	discretise	 feature	 information	 in	order	 to	390	

make	decisions	 robust	 to	noise	 [15].	 	 In	another	 recent	 line	of	work,	participants	were	asked	to	391	

compare	the	average	height	of	two	simultaneously-occurring	streams	of	bars	[20]	or	average	value	392	

of	two	streams	of	numbers	[21].		Human	choices	were	best	described	by	a	model	which	discarded	393	

information	 about	 the	 locally	 weaker	 item,	 but	 this	 “selective	 integration”	 policy	 paradoxically	394	

increased	simulated	performance	under	higher	late	noise.		As	described	here,	participants	seemed	395	

to	adjust	their	decision	policy	to	account	for	their	own	internal	late	noise:	participants	with	higher	396	

estimated	late	noise	were	more	likely	to	engage	in	robust	averaging.		Like	selective	integration,	thus,	397	

robust	averaging	is	a	decision	policy	that	discards	decision	information	but	paradoxically	confers	a	398	

benefit	on	choice.	399	

	400	

Additionally,	the	design	of	our	study	allows	us	to	draw	conclusions	about	the	timescale	over	which	401	

gain	 allocation	 occurs.	 In	 previous	 work,	 robust	 averaging	 was	 found	 to	 vary	 with	 the	 overall	402	

distribution	 of	 features	 present	 in	 a	 block	 of	 trials.	 For	 example,	 when	 averaging	 Gaussian-403	

distributed	features	in	a	red-to-purple	colour	space,	purple	features	were	relatively	downweighted,	404	

but	when	averaging	in	a	red-to-blue	colour	space,	purple	features	were	relatively	upweighted	[8].	405	

In	other	words,	the	allocation	of	gain	to	features	depended	on	the	overall	distribution	of	features	406	

in	the	block	of	trials,	with	the	most	frequently-occurring	(i.e.	expected)	items	enjoying	preferential	407	

processing.	Here,	we	saw	no	difference	in	robust	averaging	between	a	fixed	reference	condition	(in	408	

which	the	Gaussian	distribution	of	orientations	remained	stable	over	a	prolonged	block	of	trials)	409	

and	a	variable	reference	condition	(in	which	the	Gaussian	distribution	of	orientations	changed	from	410	

trials	to	trial,	and	was	uniform	over	the	entire	session).	In	other	words,	any	adaptive	gain	control	411	

was	set	by	the	reference,	and	thus	occurred	very	rapidly,	i.e.	within	the	timescale	of	a	single	trial.	412	



Evidence	for	remarkably	rapid	adaptive	gain	control	has	been	described	before.		Indeed,	short-lag	413	

repetition	priming	may	be	considered	a	form	of	gain	control	[22],	in	which	the	prime	dictates	which	414	

features	 should	 be	 processed	 preferentially	 [10].	 	 During	 sequential	 averaging,	 the	 behavioural	415	

weight	and	neural	gain	applied	to	a	feature	depend	on	its	distance	from	the	cumulative	average	416	

information	viewed	thus	far,	as	if	features	pass	through	an	adaptive	filter	with	nonlinear	form	[14].	417	

These	observations	are	consistent	with	the	theoretical	framework	that	we	propose	here.		418	

	419	

Finally,	we	discuss	some	limitations	of	our	approach.	Firstly,	our	model	uses	a	simple	power	function	420	

to	describe	the	nonlinear	transformation	of	inputs	prior	to	averaging.		We	chose	this	function	for	421	

mathematical	convenience	–	it	provides	a	simple	means	of	parameterizing	the	mapping	function	422	

feature	to	decision	information	in	a	way	that	privileges	inliers	(k	<	1)	or	outliers	(k	>	1).	However,	423	

other	forms	of	nonlinear	transformation	that	are	not	tested	here	may	also	account	for	the	data.	424	

Secondly,	our	best-fitting	model	assumes	zero	sensory	encoding	noise	(or	‘early’	noise).	Adding	early	425	

noise	to	the	model	did	not	change	qualitatively	the	benefit	of	robust	averaging	under	higher	late	426	

noise,	unless	it	becomes	performance-limiting	in	itself.	However,	in	other	settings,	early	noise	will	427	

be	an	important	limiting	factor	on	performance.	Although	we	found	that	our	“late	noise	only”	model	428	

fit	better	than	an	“early	noise	only”	model,	we	do	not	wish	to	claim	that	there	is	no	early	noise	in	429	

our	task.	Since	the	current	experiment	was	not	designed	to	estimate	the	level	of	early	noise,	it	may	430	

be	of	interest	to	directly	manipulate	both	early	and	late	noise	in	future	experiments.	431	

	432	

Methods	433	

Ethics	statement	434	

The	 study	was	 approved	by	 the	Medical	 Science	 Interdivisional	 Research	 Ethics	 Committee	 (MS	435	

IDREC)	 of	 the	 Central	 University	 Research	 Ethics	 Committee	 from	 the	 University	 of	 Oxford.	436	



Participants	 provided	 written	 consent	 before	 the	 experiment	 in	 accordance	 with	 local	 ethical	437	

guidelines.	438	

	439	

Participants	440	

	24	 healthy	 human	 observers	 (9	 males,	 15	 females;	 age	 23.4±4.7)	 participated	 in	 two	 testing	441	

sessions	that	occurred	one	week	apart.	The	order	of	testing	sessions	was	counterbalanced	across	442	

participants.	The	task	was	performed	whilst	seated	comfortably	in	front	of	a	computer	monitor	in	a	443	

darkened	room.		Participants	received	£25	in	compensation.			444	

	445	

Task	and	procedure	446	

	All	stimuli	were	created	using	the	Raphaël	JavaScript	library	and	presented	with	the	web	browser	447	

–	Chrome	Version	49.0.2623.87	on	desktop	PC	computers.	 	The	monitor	screen	refresh	rate	was	448	

60Hz.	Each	session	consisted	of	8	blocks	of	128	trials	each.		On	each	trial,	following	a	fixation	cross	449	

of	1000ms	duration,	participants	viewed	an	array	of	8	square-wave	gratings	with	random	phase	450	

(2.33	cycles/degree,	0.33	RMS	contrast,	1.72	degrees	visual	angle	per	grating)	arranged	in	a	ring	451	

7.82	degrees	from	the	center	of	the	screen	(Fig.	1).		The	array	was	presented	for	a	fixed	duration	452	

against	a	grey	background	in	each	block	(250ms,	500ms,	750ms	or	1000ms;	this	manipulation	had	453	

little	 impact	on	accuracy,	and	we	collapsed	across	 it	 for	all	analyses).	 	A	single	Gabor	patch	was	454	

presented	in	the	centre	of	the	ring	contiguous	with	the	array	elements	(3.49	cycles/degree,	0.33	455	

RMS	contrast,	1.15	degrees	visual	angle).	Participants	were	asked	to	judge	as	rapidly	and	accurately	456	

as	possible	whether	the	mean	orientation	of	the	array	of	8	peripheral	gratings	fell	clockwise	(CW)	457	

or	 counterclockwise	 (CCW)	 of	 the	 orientation	 of	 the	 central	 grating.	 	 Feedback	 was	 provided	458	

immediately	following	each	response:	the	fixation	cross	turned	green	on	correct	trials	for	500ms,	459	

and	red	on	incorrect	trials	for	2500ms.	Participants	received	instructions	and	completed	a	training	460	



block	of	32	trials	prior	to	commencing	each	session.	During	the	training	block,	the	central	grating	461	

patch	and	the	array	of	grating	patches	remained	on	the	screen	for	1	minute	or	until	participants	462	

made	a	response.		463	

	464	

Design	465	

Orientations	were	sampled	from	Gaussian	distributions	with	means	of	R+µ	where	𝑅	is	the	reference	466	

grating	orientation,	and	variances	of	s2	on	each	trial.		We	crossed	µ	and	s	as	orthogonal	factors	in	467	

the	design,	drawing	the	orientation	mean	(in	degrees)	from	µ	Î	{-20ᵒ,-10ᵒ,10ᵒ,20ᵒ}	and	orientation	468	

standard	deviation	s	Î	{8,16}.	Levels	of	µ	and	s	are	counterbalanced	and	the	order	of	presentation	469	

is	 randomised	across	trials	 in	every	block.	To	ensure	that	the	sampled	orientations	matched	the	470	

expected	distribution	with	the	given	µ	and	s,	resampling	of	orientation	values	occurred	until	the	471	

mean	and	standard	deviation	of	orientation	values	fell	within	1ᵒ	tolerance	of	the	desired	µ	and	s.	472	

We	 refer	 to	 each	 of	 the	 8	 gratings	 in	 the	 array	 as	 a	 “sample”	 of	 feature	 values.	 Reference	473	

orientations	were	drawn	randomly	and	uniformly	 from	around	the	circle.	There	was	a	total	of	8	474	

blocks	per	session,	leading	to	a	total	of	1024	trials	per	session.	In	the	fixed-reference	session,	the	475	

reference	orientation	remained	fixed	over	each	block	of	128	trials.	In	the	variable-reference	session,	476	

the	reference	orientation	changed	from	trial	to	trial.	Our	experiment	thus	had	a	2	(fixed	vs.	variable	477	

reference)	x	2	(µ	=	10,	µ	=	20)	x	2	(s	=	8,	s	=	16)	factorial	design.		478	

	479	

Analysis	480	

3	subjects	were	excluded	from	all	analyses	due	to	lowerthan60%accuracy	performance	in	either	of	481	

the	reference	condition.	Data	were	analysed	using	ANOVAs	and	regressions	at	the	between-subjects	482	

(group)	 level.	A	 threshold	of	p	<	0.05	was	 imposed	for	all	analyses,	and	we	used	a	Greenhouse-483	

Geisser	correction	for	sphericity	where	appropriate,	so	that	some	degrees	of	freedom	(d.f.)	are	no	484	



longer	integers.	We	first	compared	accuracy	and	reaction	times	for	different	levels	of	µ	and	s	 in	485	

each	 session.	 Next,	 we	 used	 probit	 regression	 to	 estimate	 the	weight	 with	which	 each	 sample	486	

influenced	choices,	as	a	 function	of	 its	position	relative	to	the	reference	angle	 in	both	fixed	and	487	

variable	 reference	 session.	 For	 all	 analyses,	we	excluded	13%	of	 trials	 (‘wraparound’	 trials)	 that	488	

contained	one	or	more	orientations	that	were	>0.79rad	or	<	0.79rad	 (equivalent	to	>45°	or	<-45°)	489	

relative	to	the	reference,	thereby	ensuring	that	we	were	working	within	a	space	in	which	feature	490	

values	𝑋	were	approximately	 linearly	 related	to	angle	of	orientation.	 	A	 further	0.2%	of	 trials	on	491	

which	no	response	was	registered	were	also	excluded.	492	

	493	

For	each	sample	𝑖	on	trial	𝑡,	we	assumed	that	orientations	in	the	sensory	space	were	being	recoded	494	

as	orientations	relative	to	reference	in	the	decision	space,	and	thus	refer	to	the	feature	values	𝑋	as	495	

the	orientation	relative	to	the	reference.	After	excluding	‘wraparound’	orientations,	all	orientations	496	

fell	within	the	range	of	-0.79rad	to	0.79rad	(equivalent	to	±45ᵒ).	To	compute	weighting	functions,	we	497	

created	for	each	participant	a	predictor	matrix	by	tallying	values	of	𝑋	within	each	of	8	equally	spaced	498	

bins	(in	feature	space)	with	centres	between	-0.75rad	and	0.75rad	on	a	trial-by-trial	basis.	Values	from	499	

each	bin	were	entered	competitive	regressors	to	regressed	against	participants’	choices	using	probit	500	

regression.	Fig.	3	 is	showing	the	beta	weights	associated	with	each	bin	modulated	by	the	sum	of	501	

feature	values	(𝑋)	within	that	bin.	502	

	503	

Modelling	504	

Power	model.	Each	element	𝑖	was	 characterised	by	a	 feature	 value	𝑋$ 	in	 radians	 (in	 the	 range	 -505	

0.79rad	 to	 0.79rad)	 that	was	 proportional	 to	 its	 orientation	 relative	 to	 the	 reference.	 Our	model	506	

assumes	 that	 the	 decision	 value	 (𝐷𝑉 )	 that	 determined	 choice	 on	 each	 trial	 was	 computed	 by	507	



transforming	orientations	relative	to	reference	using	a	power-law	transducer	parameterised	by	an	508	

exponent	𝑘.	509	

𝐷𝑉 = 𝑠𝑖𝑔𝑛(𝑋$)
-

$./

⋅ 𝑋$ 1	510	

(1)	511	

The	functions	that	map	feature	value	𝑋	onto	decision	values	𝐷𝑉	for	low	and	high	values	of	𝑘.	For	512	

the	 special	 case	𝑘	=	1,	 the	DV	 is	equivalent	 to	 the	 simple	 sum	of	Xi;	 this	 is	 the	 rule	used	by	 the	513	

experimenter	to	determine	feedback.		Next,	we	calculated	choice	probabilities	by	passing	the	𝐷𝑉	514	

through	 a	 sigmoidal	 choice	 function	 (see	 choice	 probability	 function	 and	 equation	 5)	 with	 the	515	

inverse-slope	𝑠.	Higher	values	of	s	imply	shallower	slopes	and	thus	greater	“late”	noise	The	sign	of	516	

sum	of	𝑋$ 	always	reflect	the	sign	of	the	mean	of	the	distribution	in	which	𝑋$ 	was	being	drawn	from,	517	

which	we	used	for	providing	feedback.		518	

	519	

Equivalent	gain	factor.	Different	levels	of	the	exponent	𝑘	vary	the	convexity	or	the	concavity	of	the	520	

functions	shown	in	Fig.	4a.		By	considering	the	integral	of	the	absolute	of	these	functions,	it	is	easy	521	

to	see	that	𝑘	in	turn	varies	the	overall	scaling	of	any	hypothetically	occurring	feature	values	onto	522	

𝐷𝑉.	When	𝑘	<	 1,	 average	 (absolute)	 values	 of	𝐷𝑉	are	 inflated,	 and	 thus	 pushed	 away	 from	 the	523	

category	 boundary,	 increasing	 simulated	 performance.	 We	 wished	 to	 ensure	 that	 model	524	

comparisons	 cannot	 be	 trivially	 explained	 by	 this	 unequal	 scaling	 of	 feature	 values	 to	 decision	525	

variable	under	different	levels	of	𝑘.		To	correct	for	this,	we	thus	computed	the	equivalent	gain	factor	526	

(𝑔)	that	quantifies	the	average	increase	in	absolute	𝐷𝑉	under	different	levels	of	𝑘:		527	

	528	

𝑔 =
2

1 + 𝑘	529	

(2)	530	



The	quantity	𝑔		is	equal	to	 @A

@
	where	F	is	a	hypothetical	space	of	features	(here,	positive	only	for	531	

convenience)	that	could	occur	in	the	experiment.	Multiplying	equivalent	linear	models	by		𝑔	thus	532	

corrects	 for	 the	 inflation	 that	 would	 occur	 under	 differing	 values	 of	𝑘 .	 	 We	 implemented	 this	533	

correction	when	comparing	equivalent	 linear	and	nonlinear	models	with	parameter	𝑘,	 either	by	534	

multiplying	the	input	features	of	the	linear	model	by	𝑔,	or	equivalently,	by	dividing	the	output	of	535	

the	nonlinear	model	by	𝑔.	 Importantly,	 this	 correction	was	applied	over	 the	 features	 that	 could	536	

occur,	not	the	features	that	did	occur	under	our	mixture	of	Gaussian-distributed	categories.	It	is	for	537	

this	reason	that	the	nonlinear	model	leads	to	improved	predicted	performance	in	the	experiment	538	

we	conducted,	but	not	 in	a	simulated	experiment	 in	which	 features	were	uniformly	drawn	from	539	

across	feature	space	(Fig.	6).	540	

	541	

Equivalent	 gain	 linear	 model.	 For	 each	 nonlinear	 model	 variant	 𝑘 	in	 the	 power	 model,	 we	542	

compute	𝐷𝑉	using	a	linear	model	with	equivalent	gain	factor,	i.e.	a	model	with	the	following	form:	543	

𝐷𝑉B$CDEF 	= 𝑋$

-

$./

⋅ 𝑔	545	

(3)	544	

Where	DVlinear	 refers	 to	 the	 cumulative	 decision	 value	 of	 all	 feature	 value	Xi	 after	 applied	with	546	

equivalent	gain	–	𝑔.	This	ensures	that	each	nonlinear	power	model	is	compared	to	a	linear	model	547	

with	an	equivalent	total	input-to-output	scaling	of	decision	values.		Using	this	approach,	we	could	548	

thus	compare	the	benefits	of	allocating	gain	preferentially	 to	 inliers	 (k	<	1)	or	outliers	 (k	>	1)	 to	549	

allocating	gain	evenly	across	feature	space	(𝑘	=	1),	under	the	assumption	that	neural	resources	were	550	

limited	to	a	fixed	value	defined	by	g,	for	example	the	total	number	of	spikes	across	population	of	551	

neurons	sensitive	to	orientations.	The	model	comparison	of	power	model	against	the	equivalent	552	



gain	model	is	mathematically	identical	to	comparing	model	performance	for	𝑘	<	1	or	𝑘	>	1	against	553	

𝑘	=	1	of	a	power	model	which	is	normalised	by	𝑔	in	this	form:	554	

𝐷𝑉GHCIJECJ =
𝐷𝑉
𝑔 	555	

	(4)	556	

Where	𝐷𝑉GHCIJECJ 	refers	 to	 the	decision	 variable	with	 constant	 gain	 across	 different	 levels	 of	𝑘.	557	

Under	a	𝑘	<	1	case,	inlying	items	will	be	allocated	with	more	resources	at	the	expense	of	depriving	558	

resources	from	outlying	items,	while	under	a	𝑘	>	1	case,	outlying	items	will	be	allocated	with	more	559	

resources	 at	 the	 expense	 of	 inlying	 items.	 Any	 difference	 in	 simulated	 model	 performance	 of	560	

nonlinear	transformation	of	feature	values	across	different	values	of	𝑘	are	not	due	to	differential	561	

resources	in	a	linear	model.	562	

	563	

Choice	probability	function.	 	A	choice	function	with	a	noise-term	𝑠	was	used	to	transform	𝐷𝑉	of	564	

each	 model	 into	 choice	 probabilities.	 These	 choice	 probabilities	 are	 then	 used	 for	 maximum	565	

likelihood	estimation.	We	used	a	choice	function	of	the	following	form:	566	

	567	

𝐶𝑃 = 	
1

1 + 𝑒
NOP
Q
	568	

(5)	569	

We	ensured	via	visual	inspection	that	the	resulting	fits	were	convex	over	this	search	space.	We	then	570	

used	parametric	 tests	 to	assess	whether	 the	 resulting	best-fitting	parameters	differed	positively	571	

(indicating	upweighting	of	outliers)	or	negatively	(indicating	downweighting	of	outliers)	from	1.	For	572	

each	participant,	we	searched	exhaustively	over	values	of	k	(in	the	range	0.02	to	2)	and	s	(in	the	573	

range	0.05	to	10)	that	minimised	the	negative	log	likelihood	of	the	model.		574	

	575	



Early	 noise	 only	 model.	 To	 test	 our	 assumption	 that	 early	 sensory	 noise	 (noise	 arise	 prior	 to	576	

averaging)	alone	cannot	explain	subjects’	choice	behaviour,	we	created	a	model	where	each	feature	577	

value	𝑋$ 	was	corrupted	by	𝜀$,	a	sample	of	noise	drawn	independently	from	a	Gaussian	distribution	578	

zero	mean	and	standard	deviation	𝜉	:	579	

𝑥$ = 𝑋$ + 𝜀$ 	580	

(6)	581	

After	transforming	𝑥	with	exponent	𝑘	using		equation	1,	we	converted	the	summed	of	𝑥	values	into	582	

a	choice	probability	of	0	or	1	depending	of	its	sign	(i.e.	via	a	step	function)	on	a	trial-by-trial	basis.		583	

We	fit	this	model	to	psychometric	functions,	by	computing	the	conditional	probability	of	a	clockwise	584	

response	𝑝(𝐶𝑊)	given	the	presence	of	a	feature	𝑋$ 	(sorted	in	to	9	equally	spaced	bins	between	-585	

0.75rad	 to	0.75rad).	We	did	 this	 separately	 for	 the	 fixed	 reference	 session	and	variable	 reference	586	

session	in	humans.	Using	a	grid	search	method,	we	identified	best-fitting	for	𝜉	among	20	linearly	587	

spaced	values	from	0	to	3	for	each	subject	and	reference	condition	(fixed,	variable)	by	minimising	588	

the	MSE	between	the	predicted	and	observed	psychometric	functions.	Fig.	S4A	shows	both	human	589	

psychometric	functions	and	those	predicted	by	this	early	noise	only	model,	as	well	as	late	noise	only	590	

model	described	above,	which	is	parameterised	by	𝑘	and	𝑠	(and	thus	has	an	equivalent	number	of	591	

free	parameters).	592	

Having	identified	the	best-fitting	parameters,	we	used	these	to	predict	accuracy	for	each	level	of	593	

mean	and	variance,	and	the	weighting	function	in	the	fixed	and	variable	reference	conditions.	The	594	

weighting	function	obtained	from	best	fitting	parameterisation	of	the	model	is	shown	on	Fig.	S4B	595	

and	model	fits	of	accuracies	can	be	seen	in	Fig.	S4C.	The	early	noise	only	model	failed	to	predict	the	596	

presence	of	robust	averaging	and	incorrectly	predicted	that	accuracy	would	not	vary	as	a	function	597	

of	the	variance	in	the	stimulus	array,	and	was	thus	unable	to	account	for	human	data.		598	

	599	



Population	coding	power	model.	As	with	the	power	model,	we	assume	that	feature	values	were	600	

recoded	from	presented	orientations	relative	to	the	reference	into	a	linear	space	spanning	between	601	

–3	and	3	 (e.g.	 radians)	where	0	 is	 the	value	of	 the	 reference.	We	assumed	a	population	of	600	602	

neurons	(Μ = 600)	whose	tuning	curves	are	linearly	spaced	across	the	feature	space.	The	tuning	603	

curve	for	any	neuron,	𝑗,	is	defined	as	a	Gaussian	probability	density	function	centred	at	the	neuron’s	604	

preferred	feature	value,	𝑓\,	and	with	a	tuning	width	fixed	across	the	population,	𝜀,	specified	by	an	605	

additional	 free	parameter.	The	amplitude	of	each	neuron’s	 tuning	curve	 (i.e.	 its	maximum	firing	606	

rate)	was	controlled	by	a	gain	factor	which	is	a	function	of	the	neuron’s	preferred	feature	value,	𝑓\,	607	

and	the	power	law:	608	

𝐺\ = |𝑓\|1_/	609	

(7)	610	

Where	𝐺\represents	 the	gain,	𝐺,	applied	to	neuron,	𝑗,	whose	preferred	 feature	value	 is	𝑓\,	and	a	611	

free	parameter,	𝑘,	controls	the	gain	applied	across	the	feature	space	in	the	neural	population.	The	612	

firing	rate	,	𝑅\$,	for	each	neuron	𝑗	given	a	particular	stimulus,	𝑋$,	is	computed	as:	613	

𝑅\$ = 𝑁(𝑋$, 𝑓\, 𝜀) ∙ 𝐺\ ⋅
𝜌
Μ	614	

(8)	615	

Where	𝑁(𝑋$, 𝑓\, 𝜀)	correspond	to	the	probability	density	of	a	Gaussian	with	mean,	𝑓\,	and	variance,	616	

𝜀,	evaluated	at	point,	𝑋$.	To	adjust	 for	the	scaling	of	output	values,	 the	product	of	 the	Gaussian	617	

density	 function	and	gain	 function	 is	additionally	scaled	by	d
e
	,	which	 is	 the	ratio	of	 range	of	 the	618	

linear	 space	 in	 radians	 (𝜌)	 to	 the	 number	 of	 neurons	 (M).	 This	 ensures	 that	 the	 output	 of	 the	619	

population	activity	𝑅	will	remained	invariant	to	these	factors	of	no	interest	in	our	model.	Lastly,	the	620	

model's	estimate	of	a	stimulus,	𝑋$,	is	a	computed	from	the	population	of	neurons	as	follows:		621	



Θ$ = 	 𝑅\$

h99

\./

⋅ 𝑓\ 	622	

(9)	623	

Where	𝑅	is	the	population	activity	vector	for	𝑋$.	Firing	rate	(𝑅\$)	of	each	neuron	𝑗	is	weighted	by	the	624	

corresponding	neuron’s	preferred	feature	value	(	𝑓\)	before	summation	to	get	the	model	estimate	625	

for	stimulus	 (Θ$).	This	 is	 then	used	 for	computing	the	cumulative	decision	values	 (summation	of	626	

model	estimated	angles)	on	a	trial	by	trial	basis	for	computing	choice	probability	using	equation	5	627	

and	negative	log-likelihood	for	model	fitting.	628	

	629	

Parameter	recovery.	To	test	the	ability	of	the	fitting	procedure	to	accurately	identify	the	parameters	630	

of	the	best-fitting	power	model.	We	sampled	20	equally-spaced	values	of	𝑘	(in	the	range	of	0.02	to	631	

2)	 and	𝑠 	(in	 the	 range	 of	 0.05	 to	 10).	 For	 each	𝑘 	and	𝑠 	combination,	 we	 transformed	 a	 set	 of	632	

orientations	presented	to	subjects	in	the	experiment	using	the	given	k	and	computed	the	choice	633	

probability	 of	 the	𝐷𝑉 	with	 the	 given	𝑠 .	 Then	 we	 compared	 the	 trial-to-trial	 estimated	 choice	634	

probability	against	a	random	probability	drawn	from	a	uniform	distribution	with	a	range	of	0	to	1	to	635	

generate	model	choices.	We	then	used	these	artificial	choices	to	recover	best-fitting	values	of	k	and	636	

s	via	maximum	likelihood	estimation.		637	

	638	

Model	 performance	 simulation.	We	 simulated	 model	 performance	 (decision	 accuracy)	 under	639	

different	𝑘	in	 a	 range	of	 0.02	 to	2	 and	𝑠	in	 a	 range	of	 0.05	 to	5	 for	 the	power	model.	 For	 each	640	

combination	of	𝑘	and	𝑠,	 trial-to-trial	estimate	of	𝐷𝑉	was	 computed	and	 transformed	 into	choice	641	

probability	 using	 equation	 5.	Model	 choices	 were	 created	 by	 comparing	 the	 choice	 probability	642	

against	a	probability	drawn	randomly	from	a	uniform	distribution.	Model	accuracy	was	computed	643	



as	the	proportion	of	model	choices	that	were	the	same	as	the	pre-defined	correct	choice,	which	is	644	

simply	determined	by	the	sign	of	the	sum	of	𝑋.	 	645	
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Supporting	Information	Legends	711	

Fig.	S1.	d’	analysis		712	

d’	 for	each	 level	of	 |μ|	 (mean)	and	σ	 (variance)	 conditions	were	 computed	 separately	 for	 fixed	713	

reference	 (Left	panel)	and	variable	reference	session	 (Right	panel).	The	grey	 lines	correspond	to	714	

human’s	average	d’	for	low	mean	(light	grey)	and	high	mean	conditions	(dark	grey).	The	green	dots	715	

correspond	to	the	model	fits	for	each	condition	(low	mean	in	light	green	dots	and	high	mean	in	dark	716	

green	dots).		717	

	718	

S1	table.	ANOVA	results	on	the	d’	analysis.	719	

	720	

Fig.	S2.	Parameter	recovery	721	

Recovered	parameters	(y-axis)	plotted	against	the	actual	parameters	(x-axis)	for	𝑘	(left	panel)	and	722	

𝑠	(right	panel).	Black	line	is	the	identity	line.	723	

	724	

Fig.	S3.	Performance	under	different	presentation	duration	conditions	725	

Mean	and	standard	error	of	mean	for	|µ|	on	accuracy	(left	panel)	and	reaction	times	(right	panel)	726	

under	 different	 presentation	 durations	 (x-axis)	 in	 fixed	 (dark	 grey	 line)	 and	 variable	 reference	727	

session	(light	grey	line).		728	

	729	

Fig.	S4.	Model	comparison	of	Early	noise	only	model	and	Late	noise	only	model	730	

(A)	Model	psychometric	functions	(dotted	line	for	“EN	only”	model	and	thin	solid	line	for	“LN	only”	731	

model)	 were	 plotted	 against	 humans	 (darker	 coloured	 dots).	 Both	models	 successfully	 capture	732	

human	psychometric	functions	of	the	fixed	reference	and	the	variable	reference	sessions	(red	vs.	733	

green).	 (B)	 Recreation	 of	 the	 weighting	 function	 under	 simulated	 choices	 from	 the	 best	 fitting	734	



parameterisation	of	the	early	noise	model.	This	model	failed	to	replicate	human	robust	averaging	735	

as	shown	in	Fig.	3A.	(C)	Condition-wise	mean	accuracy	and	standard	error	of	mean	of	the	“EN	only”	736	

model	(pinkish	dots)	and	the	“LN	only”	model	(bluish	dots)	superimposed	on	human	accuracies	(grey	737	

lines).	Left	panel	shows	the	performance	in	the	fixed	reference	session,	and	the	right	panel	shows	738	

that	of	the	variable	reference	condition.		739	

	740	

Fig.	S5.	Feature	values	and	decision	values	generated	by	a	population	coding	power	model	741	

Transfer	 functions	 that	 showed	 feature	 values	 were	 being	 transformed	 into	 decision	 values	 in	742	

nonlinear	ways	under	different	values	of	𝑘	(coloured	lines,	in	a	range	of	0.02	to	2),	similar	to	transfer	743	

functions	shown	in	fig.	4A,	which	were	generated	by	a	simple	power	model.	Tuning	width	of	neurons	744	

(𝜀)	was	assumed	to	be	0.5	in	this	illustration.	745	

	746	

Fig.	S6.	Simulated	accuracy	under	best-fitting	parameterisation	of	population	coding	747	

Similar	figure	shown	in	fig.	2,	this	figure	is	showing	the	mean	(and	standard	error	of	mean)	accuracy	748	

of	human	(grey	lines).	Green	dots	represent	the	simulated	mean	accuracy	(and	standard	error	of	749	

mean)	using	best-fitting	parameters	yield	from	humans	with	the	population	coding	power	model.	750	

	751	

Fig.	S7.	Recreation	of	parameter	estimates	using	the	population	coding	model	752	

This	figure	is	the	same	as	fig.	3B,	but	instead	of	using	the	simple	power	model,	model	choices	were	753	

simulated	 using	 the	 population	 coding	 power	 model	 under	 best-fitting	 parameterisation	 of	 3	754	

parameters	(𝜀, 𝑘, 𝑠).	755	

	756	

Fig.	S8.	exponent	𝒌	and	gain	(𝒈)	757	



Lower	 values	𝑘 	(darker	 dots)	 have	 higher	 multiplicative	 gain,	 therefore	 the	 corresponding	𝑔 	is	758	

higher	for	low	value	of	𝑘	759	

	760	

Supporting	Information	File-	PLOS_CB_data.mat.	761	

Data	that	supports	the	findings	of	this	study.	It	requires	MATLAB	to	access.	762	
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