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Abstract

More than half of the cultivation-induced carbon loss from agricultural soils could be restored through improved

management. To incentivise carbon sequestration, the potential of improved practices needs to be verified. To date,

there is sparse empirical evidence of carbon sequestration through improved practices in East-Africa. Here, we show

that agroforestry and restrained grazing had a greater stock of soil carbon than their bordering pair-matched controls,

but the difference was less obvious with terracing. The controls were treeless cultivated fields for agroforestry, on

slopes not terraced for terracing, and permanent pasture for restrained grazing, representing traditionally managed

agricultural practices dominant in the case regions. The gain by the improved management depended on the carbon

stocks in the control plots. Agroforestry for 6–20 years led to 11.4 Mg ha�1 and restrained grazing for 6–17 years to

9.6 Mg ha�1 greater median soil carbon stock compared with the traditional management. The empirical estimates

are higher than previous process-model-based estimates and indicate that Ethiopian agriculture has greater potential

to sequester carbon in soil than previously estimated.
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Introduction

Converting forests to agricultural land together with

unsustainable land use has caused soil erosion and

depletion of soil carbon stock in large areas in East-

Africa (Lal, 2004; Smith et al., 2007). Use of manure and

crop residues for energy has reduced carbon inputs

ending up to soil (Rimhanen & Kahiluoto, 2014) and

free grazing has declined vegetation cover and exposed

soil to erosive rains (Nyssen et al., 2005). For example

in Ethiopia, agricultural soils have lost about 230–670
Mt of carbon since 1950s (Girmay et al., 2008). Since the

end of the 19th century the government of Ethiopia has

implemented regreening projects in order to restore

degraded soils (Lemenih & Kassa, 2014). Practices

include restricting grazing, building terraces and estab-

lishment of agroforestry (Hadgu et al., 2009; Tefera &

Sterk, 2010; Lemenih & Kassa, 2014). At the New York

Climate Summit 2014 Ethiopia engaged to restore fur-

ther 15 million hectares of degraded land by 2030 (UN

2014). This equals 15% of the total land area of Ethiopia.

The large area of severely degraded agricultural land,

the low costs of improved management practices and

the benefits for soil productivity (Schmidt et al., 2011)

make carbon sequestration through improved agricul-

tural management a worthwhile option to both mitigate

and adapt to climate change (Smith & Olesen, 2010;

Kahiluoto et al., 2014) in East Africa. Agricultural soils

can, under favorable conditions, conserve even more

carbon than soils with natural vegetation (Six et al.,

2002) and have twice the potential for carbon sequestra-

tion relative to the aboveground biomass (Tschakert,

2004; Takimoto et al., 2008). The technical mitigation

potential of African agricultural sector corresponds to

17% of the global total mitigation potential by the year

2030, most of the potential representing carbon seques-

tration in cropland and grazing land (Smith et al.,

2008).

The lack of empirical estimates of soil carbon seques-

tration potential of agricultural practices has been

argued to be one of the major bottlenecks preventing

the introduction of carbon payments to African farmers

(Bryan et al., 2010; Kahiluoto et al., 2012, 2014). Previous

studies from Ethiopia have explored carbon stocks of

different land uses (Solomon et al., 2002; Lemenih &

Itanna, 2004; Lemma et al., 2006; Gelaw et al., 2014),

especially changes in carbon stocks after the transition

from forest to agriculture (Solomon et al., 2002; Leme-

nih & Itanna, 2004) and after establishment of exotic

tree monoculture plantations on agricultural land

(Lemma et al., 2006). The published estimates of carbon
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sequestration potential of agricultural practices are

based on process models or serve model parameteriza-

tion (Farage et al., 2007; Kamoni et al., 2007; Smith et al.,

2008; Batjes, 2014). Consequently, empirical knowledge

of agricultural carbon sequestration in East-Africa is

needed.

The aim of this study was to empirically quantify the

soil carbon sequestration potential under ‘improved

management’ in comparison with traditional farming.

Three improved management practices with the longest

histories in the study regions, agroforestry, restrained

grazing, and farmland terracing, were each compared

with adjacent controls of corresponding traditional

farming dominant in the case regions. We hypothesized

that the improved management practices increase soil

carbon stock compared to traditional farming as a

result of increased carbon inputs and reduced soil dis-

turbance. Furthermore, explanatory factors for the car-

bon sequestration potential are discussed.

Materials and methods

Description of the study areas

The study was conducted in Kobo, Amhara region, and in

Sire, Oromia region, which represent the major food-produ-

cing areas of Ethiopia and exhibit a range of agroecological

and socioeconomic features (Fig. 1). The mean annual temper-

ature is 21–25 °C in Kobo and 15–20 °C in Sire. Most of the

rain falls in August and July (Fig. 2).

In Kobo, severe soil erosion due to deforestation, overgraz-

ing, and the cultivation of steep slopes results in low

agricultural productivity. In Sire, the landscape is mainly flat

with gentle slopes. The soils are relatively fertile with a med-

ium soil-degradation rate, resulting in higher yields, and hold-

ing sizes are larger, enabling more diverse crop rotations than
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Fig. 1 Locations of the study regions Kobo and Sire and the study plots within the regions. The plot locations are marked with white

circles, with the figure within each circle referring to the number of study plots within the location (Google Maps 2016).
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Fig. 2 Monthly mean rainfall in Kobo and Sire in the years

1996–2010 (excluding year 2001 due to incomplete data).
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in Kobo. In both study regions agriculture is characterized by

‘highland temperate mixed farming’ according to FAO’s farm-

ing system typology (Dixon et al., 2001). That farming system

occupies approximately one-third of the land area in Ethiopia.

Average farm size is 1–2 ha. In Kobo the most common culti-

vated plants are great millet (Sorghum bicolor L.), wheat (Triti-

cum spp. L.), teff (Eragrostis tef (Zucc.)Trotter) and barley

(Hordeum vulgare L.). In Sire crop rotations are more diverse

containing teff, wheat, barley, maize (Zea mays L.), vegetables,

and pulses. The number of livestock is high. The main sources

of income are from the sale of animals and animal products,

local beer and crops (Dixon et al., 2001). Agriculture is rain-

fed, characterized by low inputs and low outputs. Lack of fire-

wood has resulted in the use of cow dung as fuel and reduced

its use as fertilizer (Rimhanen & Kahiluoto, 2014). Fields are

cleared after harvesting from crop residues for fodder and

fuel.

Compared management practices

Assessment of the carbon sequestration potential of

improved agricultural practices was based on comparing

three existing and contrasting practices, i.e., agroforestry,

areas with restrained grazing and farmland terracing, with

corresponding traditional farming practices which preceded

the improved practices and still prevailed in the area. The

improved practices were adopted decades ago to improve

agricultural productivity. They varied in the study regions

due to the agroecological and socioeconomic conditions,

such as available water resources, topography, and collabo-

rative traditions. In areas of restrained grazing the vegeta-

tion was mainly Acacia species (e.g., A. abyssinia, A. seyal,

A. tortilis) (Table 1). The agroforestry plots were of the mul-

tistrata, home-garden type (Young, 1997). Controls for ter-

racing and agroforestry were treeless rain-fed cultivated

(arable) fields without terraces and trees, and for areas with

restrained grazing uncultivated, freely grazed land. In the

traditional and terraced farmlands, the cropping was prac-

tised without fallow periods. After harvesting, crop residues

were removed and free grazing was allowed. Soil carbon

concentration varied between 0.9% and 3.2% for agro-

forestry land and its control, 0.7% and 2.8% for areas of

restrained grazing and its control and 0.3% and 3.6% for

terracing and its control. The median management duration

was 8.5 years for agroforestry, 13 years for restrained graz-

ing, and 7 years for terracing.

Sampling design

The soil samples were collected in October–November 2010

using a matched pairs design (Koopmans, 1981). Soil was

sampled from 23 plot pairs, each pair including a plot for an

improved management practice and a traditionally managed

control plot which was adjacent and bordering to the

improved plot. Apart from differences due to management

history, the plots close together in a field can be expected to

be alike. The improved management practice was restrained

grazing in seven of the plot pairs, terracing in eight plot pairs

and agroforestry in eight plot pairs. Terracing and restrained

grazing were sampled in Kobo and agroforestry around

homesteads in Sire. The management history of the plots was

confirmed by interviewing farmers. The accessible plot pairs

were identified in a haphazard manner. From the identified

plots of the improved management practices those plots were

selected that had been under the management for the longest

time. Besides proximity of the plots of the improved and tra-

ditional management practices, the criteria for pairing the

plots were the same management history before conversion

to improved management and the visual assessment of simi-

lar topography, soil type, and texture. The similarity of the

plots of the improved managements to their traditional con-

trols was also confirmed regarding altitude, slope, and soil

texture (Table 2). Each plot was divided into three subplots

to explore the within-plot variation. For each subplot, ten

subsamples from the 0–15 cm soil layer were taken with an

auger and pooled for soil analyses. Two bulk density sam-

ples were taken from each subplot at the same depth as the

augered soil samples with a core sampler volume of 104 cm3

in Kobo and 98 cm3 in Sire. Means of the measurements from

the three subplots were used as observations in the statistical

analyses.

Soil analyses

The soil samples were air dried and ground (<2 mm). The

total carbon concentrations were analysed by dry combustion

at 1100 °C using the Leco CN-2000 analyser (Leco Corpora-

tion, St. Joseph, MI, USA). This analysis was performed for

original samples and those treated with 6 M HCl to remove

carbonate carbon (0–0.55%, median 0.10%). The results pre-

sented in this paper represent carbon contained in organic

matter, remaining in the soil after the HCl treatment. The bulk

density samples were dried at 105 °C for 12 hours and

weighed. The bulk density (qb) (g cm�3) was calculated as the

dry weight of the soil divided by the volume of the soil. Car-

bon stocks (Mg ha�1) were primarily calculated by multiply-

ing the concentrations (%) of soil carbon by the bulk density

(g cm�3) and the depth of the sampled soil (15 cm) and also

expressed in kg per 1 Mg of soil.

Statistical analyses

The design was a split-plot type in which the three groups of

plot pairs (agroforestry, areas of restrained grazing and terrac-

ing) were the levels of the whole-plot factor and the two man-

agement practices (traditional and improved) were the levels

of the subplot factor (Fig. 3). Consequently, the statistical anal-

ysis of soil carbon stock was based on a mixed model for a

split-plot design including three fixed effects (main effects of

the whole-plot factor and the subplot factor and their interac-

tion) and two random effects (whole-plot error and subplot

error). The carbon stocks of the plots within each plot pair

were positively correlated. This was taken into account in the

model with the compound symmetry covariance structure

(Gbur et al., 2012) which was estimated separately for the

three improved management practices. To satisfy the distribu-

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3739–3749

AGRICULTURAL SOIL CARBON IN ETHIOPIA 3741



T
a
b
le

1
P
la
n
t
sp

ec
ie
s
co
m
p
o
si
ti
o
n
in

th
e
st
u
d
y
p
lo
ts

M
an

ag
em

en
t

p
ra
ct
ic
e

P
lo
t

1
2

3
4

5
6

7
8

(a
)
A
g
ro
fo
re
st
ry

A
ca
ci
a
M
il
l.
sp

p
.

C
ar
ic
a
pa
pa
ya

L
.

C
of
fe
a
ar
ab
ic
a
L
.

E
n
se
te
ve
n
tr
ic
os
u
m

W
el
w
.C

he
es
em

an

M
an
gi
fe
ra

in
di
ca

L
.

P
er
se
a
am

er
ic
an
a
L
.

C
ar
ic
a
pa
pa
ya

L
.

C
it
ru
s
si
n
en
si
s
L
.

C
it
ru
s
li
m
on

L
.

M
an
gi
fe
ra

in
di
ca

L
.

M
u
sa

ac
u
m
in
at
a

C
o
ll
a

S
ac
ch
ar
u
m

of
fi
ci
n
ar
u
m

L
.

S
ol
an
u
m

ly
co
pe
rs
ic
u
m

L
.

Z
ea

m
ay
s
L
.

A
ca
ci
a
M
il
l.
sp

p
.

C
of
fe
a
ar
ab
ic
a
L
.

M
an
gi
fe
ra

in
di
ca

L
.

M
u
sa

ac
u
m
in
at
a

C
o
ll
a

S
es
ba
n
ia
se
sb
an

(L
.)
M
er
r.

P
ha
se
ol
u
s

vu
lg
ar
is
L
.

Z
ea

m
ay
s
L
.

C
ap
si
cu
m

an
n
u
u
m

L
.

C
ar
ic
a
pa
pa
ya

L
.

C
of
fe
a
ar
ab
ic
a
L
.

C
it
ru
s
li
m
on

L
.

M
an
gi
fe
ra

in
di
ca

L
.

M
u
sa

ac
u
m
in
at
a

C
o
ll
a

P
er
se
a
am

er
ic
an
a
L
.

S
ol
an
u
m

ly
co
pe
rs
ic
u
m

L
.

S
ol
an
u
m

tu
be
ro
su
m

L
.

B
ra
ss
ic
a
ol
er
ac
ea

L
.

C
at
ha

ed
u
li
s

F
o
rs
k
.

C
it
ru
s
li
m
on

L
.

C
of
fe
a
ar
ab
ic
a
L
.

E
n
se
te

ve
n
tr
ic
os
u
m

(W
el
w
.)
C
h
ee
se
m
an

Ja
tr
op
ha

cu
rc
as

L
.

M
an
gi
fe
ra

in
di
ca

L
.

M
u
sa

ac
u
m
in
at
a

C
o
ll
a

P
en
n
is
et
u
m

pu
rp
u
re
u
m

S
ch

u
m
ac
h
.

A
ca
ci
a
M
il
l.
sp

p
.

C
at
ha

ed
u
li
s

F
o
rs
k
.

C
ar
ic
a
pa
pa
ya

L
.

C
ap
si
cu
m

an
n
u
u
m

L
.

C
of
fe
a
ar
ab
ic
a
L
.

E
u
ca
ly
p
tu
s

g
lo
b
u
lu
s
L
ab

il
l.

Ja
tr
op
ha

cu
rc
as

L
.

S
es
ba
n
ia
se
sb
an

(L
.)
M
er
r.

S
ol
an
u
m

ly
co
pe
rs
ic
u
m

L
.

P
u
n
ic
a
gr
an
at
u
m

L
.

S
ol
an
u
m

ly
co
pe
rs
ic
u
m

L
.

Z
ea

m
ay
s
L
.

A
ca
ci
a
M
il
l.
sp

p
.

C
of
fe
a
ar
ab
ic
a
L
.

E
n
se
te

ve
n
tr
ic
os
u
m

(W
el
w
.)

C
h
ee
se
m
an

E
u
ca
ly
p
tu
s

g
lo
b
u
lu
s
L
ab

il
l

M
an
gi
fe
ra

in
di
ca

L
.

M
u
sa

ac
u
m
in
at
a

C
o
ll
a

P
er
se
a
am

er
ic
an
a
L
.

S
ac
ch
ar
u
m

of
fi
ci
n
ar
u
m

L
.

A
ca
ci
a
M
il
l.
sp

p
.

C
of
fe
a
ar
ab
ic
a
L
.

Ju
n
ip
er
u
s
pr
oc
er
a
L
.

M
an
gi
fe
ra

in
di
ca

L
.

O
le
a
A
fr
ic
an
a

M
il
l.

P
er
se
a
am

er
ic
an
a
L
.

P
ha
se
ol
u
s

vu
lg
ar
is
L
.

Z
ea

m
ay
s
L
.

C
o
n
tr
o
l

Z
ea

m
ay
s
L
.

Z
ea

m
ay
s
L
.

P
ha
se
ol
u
s

vu
lg
ar
is
L
.

Z
ea

m
ay
s
L
.

T
ri
ti
cu
m

sp
p
.
L
.

P
ha
se
ol
u
s

vu
lg
ar
is
L
.

T
ri
ti
cu
m

sp
p
.
L
.

Z
ea

m
ay
s
L
.

A
ll
iu
m

ce
pa

L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

T
ri
ti
cu
m

sp
p
.
L
.

P
ha
se
ol
u
s

vu
lg
ar
is
L
.

Z
ea

m
ay
s
L
.

(b
)
R
es
tr
ai
n
ed

g
ra
zi
n
g

A
ca
ci
a
A
by
ss
in
ia

H
o
ch

st
.
ex

B
en

th
.

A
ca
ci
a
se
ya
l
D
el
.

A
ca
ci
a
to
rt
il
is

(F
o
rs
sk
.)
H
ay

n
e

A
ca
ci
a
to
rt
il
is

(F
o
rs
sk
.)
H
ay

n
e

A
ca
ci
a
N
il
ot
ic
a

(L
.)
W

il
ld
.
ex

D
el
.

A
ca
ci
a
se
ya
l
D
el
.

A
ca
ci
a
to
rt
il
is

(F
o
rs
sk
.)
H
ay

n
e

A
ca
ci
a
N
il
ot
ic
a

(L
.)
W

il
ld
.
ex

D
el
.

A
ca
ci
a
se
ya
l
D
el
.

A
ca
ci
a
to
rt
il
is

(F
o
rs
sk
.)
H
ay

n
e

A
ca
ci
a
N
il
ot
ic
a

(L
.)
W

il
ld
.
ex

D
el
.

A
ca
ci
a
se
ya
l
D
el
.

A
ca
ci
a
to
rt
il
is

(F
o
rs
sk
.)
H
ay

n
e

A
ca
ci
a
N
il
ot
ic
a

(L
.)
W

il
ld
.
ex

D
el
.

A
ca
ci
a
se
ya
l
D
el
.

C
o
n
tr
o
l

B
u
sh

es
B
u
sh

es
B
u
sh

es
B
u
sh

es
B
u
sh

es
B
u
sh

es
B
u
sh

es

(c
)
T
er
ra
ci
n
g

H
or
de
u
m

vu
lg
ar
e
L
.

L
en
s
cu
li
n
ar
is
L
.

T
ri
ti
cu
m

sp
p
.
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)

T
ro
tt
er

H
or
de
u
m

vu
lg
ar
e
L
.

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

C
o
n
tr
o
l

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

E
ra
gr
os
ti
s
te
f

(Z
u
cc
.)
T
ro
tt
er

S
or
gh

u
m

bi
co
lo
r
L
.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3739–3749

3742 K. RIMHAN �EN et al.



tional assumptions of the model carbon stocks were log-trans-

formed. Carbon concentration (values between 0 and 1) was

analyzed as a Beta-distributed variable according to the corre-

sponding generalized linear mixed model for a split-plot

design with the logit link function (Gbur et al., 2012). The

model was fitted using the pseudo likelihood estimation

method (Gbur et al., 2012). Analysis of covariance was used to

compare the impact of the improved management practices

on soil carbon stock and to eliminate the differences in the

durations of the improved practices and in the carbon stocks

of the adjacent traditional plots. The data of terracing included

one plot pair in which carbon stock of the traditional control

was highly discrepant due to exceptionally high carbon con-

centration in all three subplots (Fig. 3). The main results are

presented with and without the discrepant observation in

order to show the influence of the outlier to the results. The

analyses were performed using the MIXED and GLIMMIX

procedures in version 9.3 of the SAS/STAT software (Littell et al.,

2006).

Results

Comparison of the improved management practices with
their traditional controls

In 19 of the 23 plot pairs the difference in carbon stock

was in favor of the improved practice (Fig. 3). Espe-

cially agroforestry and areas of restrained grazing had

a clear positive impact on soil carbon stock compared

with traditional management. Average carbon stock

was in agroforestry plots 30% (95% CI: 4–64%) higher

and in plots with restrained grazing 52% (95% CI: 12–
106%) higher than in their adjacent, bordering tradi-

tionally managed plots (Fig. 4, Table 3). Correspond-

ingly, the average carbon stock was 15% (95% CI: �15

to 57%) higher under terracing than the control (with-

out one discrepant observation, Table 3). When aver-

aged across the improved management practices their

common relative gain was 32% (95% CI: 14–52%)

higher than in the control plots (medians 26.0 and

19.7 Mg ha�1, P < 0.001). The length of time the plot

had been under improved management ranged from 6

to 20 years for agroforestry, from 6 to 17 years for

restrained grazing and from 5 to 10 years for farmland

terracing.

In our data, the bulk density differences were small

within the matched pairs (Table 2) leading to a small

difference in relative carbon stock gain by the improved

managements between the fixed depth approach and

the equivalent soil mass approach (Ellert & Bettany,

1995; Wendt & Hauser, 2013) indicated by the carbon

concentrations kg per Mg soil (Table 4), and applied to

assess the sensitivity of our results to the method used

to quantify soil carbon stocks. Consequently, the differ-

ences in average carbon stock are not overestimated in

this study.

Comparison of the improved management practices with
each other

The differences in magnitudes of the carbon stock gains

by the improved management practices do not neces-

sarily reflect the difference in impact by the improved

practices, but may result from the various conditions of

the improved practices (e.g. cultivation history, soil tex-

ture, slope, and local precipitation) indicated by the dif-

ference of carbon stock levels of the traditionally

managed control plots (Fig. 3). Furthermore, the carbon

stocks depended slightly on the durations of the

improved practices, tending to be lower with the long-

est durations than with the shortest durations. Conse-

quently, to compare the improved practices in terms of

their impact on soil carbon stock, it is essential to elimi-

nate the effects of the differences in the sizes of the car-

bon stocks in the adjacent traditional plots and in the

durations of the improved practices. To adjust for the

differences in duration, the soil carbon stocks were

divided by the duration (in years) of the improved

practices and the ratio, i.e. the rate of carbon stock accu-

mulation since conversion to improved management,

was used as a response variable in a model where the

corresponding carbon stock of the traditional manage-

ment was included as a covariate to account for differ-

ences in the sizes of the carbon stocks of the traditional

plots.

The relationship between the response and the

covariate was modeled by a regression line allowing

different intercepts and different slopes for the

improved management practices. However, tests of the

equality of the slopes and the equality of the intercepts

of the regression lines revealed that a common regres-

sion line adequately fitted the data for each improved

practice when one discrepant terracing observation was

excluded (Fig. 5, Table 5). This result indicates that the

differences in rate of carbon stock accumulation among

the plots managed with improved practices are

accounted for the corresponding differences of the tra-

ditional controls. The estimate of the common slope,

1.09 Mg ha�1 (standard error = 0.077), indicates that

since conversion to improved management the average

increase in the carbon stock accumulation rate of the

plots managed by each improved practice is 1.09

Mg ha�1 for every 1.00 Mg ha�1 increase in the accu-

mulation rate of the traditionally managed plots. When

the discrepant observation was included in the analy-

sis, the slope of the regression line for terracing devi-

ated from the common slope of the lines for

agroforestry and area with restrained grazing because

the discrepant observation drew the line toward it

(Fig. 5). This observation suggests that, under condi-

tions of higher initial rate of soil carbon stock accumu-
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lation, the accumulation rate for terracing would not be

as high as for agroforestry and restrained grazing.

Discussion

Explanatory factors for carbon sequestration potential

Agroforestry and restrained grazing had a greater stock

of soil carbon compared with traditional management,

but the difference was less obvious with terracing. The

higher average carbon stocks under agroforestry and in

areas with restrained grazing are partly explained by a

higher biomass of perennial vegetation with multilevel

canopy and root systems (Schlesinger & Lichter, 2001).

In addition, the woody biomass and deposition of root

biomass in deep soil layers as well as reduced soil dis-

turbance slowed the decomposition of organic matter

(Smith & Olesen, 2010).

The gains by the improved management depended

also on the carbon stock levels in the adjacent tradition-

ally managed plots and the durations of the improved

practices. The carbon stocks were greatest for the tradi-

tional plots adjacent to the agroforestry plots reflecting

the landscape with lower elevation, a notably shorter

cultivation history, more diverse crop rotations, higher

rainfall, and finer soil texture. In the regions where

restrained grazing and terracing were practiced and

where the carbon stocks were smaller than in the region

of agroforestry, steep slopes were cultivated and grazed

for thousands of years with a severe rate of degrada-

tion. In the freely grazed land, the noncultivation and

grassland may have resulted in greater carbon stocks

than in the cultivated fields. The gradual shifts in the

positions of the terraces, due to frequent collapses, may

have reduced the differences in carbon stock between

the adjacent fields and thus hidden the possible impact

of terracing through reduced soil erosion and exit of

organic matter. An additional contributing factor may

have been the mixing of carbon-scarce subsoil, and thus

the dilution of the carbon-rich topsoil, when the ter-

races were established. After controlling for the differ-

ences in the carbon stocks of the traditionally managed

plots and in the durations of the improved practices

(and excluding the discrepant observation for terrac-
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discrepant value for a terracing traditional control (pair 4 in

Fig. 3) was excluded. The number of replicated plots is pre-
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ing), the slopes of the regression lines, describing the

relationship between the accumulation rates under the

improved and the traditional management practices,

did not differ among the improved practices. However,

more research is needed to reliably determine the influ-

ence of the initial conditions on the carbon sequestra-

tion rate under the improved practices.

Comparison with previous studies

In the recent study of Gelaw et al. (2014) two improved

practices (agroforestry and irrigation) were compared

with treeless rain-fed cultivation. Although the mean

difference in the carbon stock between agroforestry and

the control (9.7 Mg C ha�1) was not statistically signifi-

cant, the estimate is of the same magnitude as for

restrained grazing in our study. However, our esti-

mates of average carbon sequestration under agro-

forestry and restrained grazing are higher than

previously reported in process-modeling studies

(Tschakert, 2004; Farage et al., 2007 Smith et al., 2008).

For example, Tschakert (2004) reported tree plantation

(Faidherbia albida) increasing soil carbon stocks during

25 years by 0.2 Mg ha�1 a�1, Farage et al. (2007)

through maintaining trees up to 0.1 Mg ha�1 a�1 in the

top 20 cm and Smith et al. (2008) through agroforestry

in warm-dry climate by 0.1 Mg ha�1 a�1. In our study,

under agroforestry, the accumulation rate in the top

15 cm was on average 1.2 Mg ha�1 a�1 (95% CI: 0.3–
2.0) higher and in restrained grazing 0.7 Mg ha�1 a�1

(95% CI: 0.3–1.3) higher relative to the traditional con-

trol when estimated by the Hodges-Lehmann proce-

dure (Sprent & Smeeton, 2001). The obvious reason for

the difference is that the process-based models were

developed and validated under temperate conditions

and for systems not representative of East Africa

(Andr�en et al., 2012). In previous studies from Kenya,

the often-used soil organic carbon models Century and

RothC performed better for monocropping than for

intercropping systems common in East-Africa (Kamoni

et al., 2007), exemplified by the agroforestry and

restrained grazing in the present study.

One additional explanation for the greater carbon

sequestration rates suggested by the empirical results

of the present study than by previous process-based

modeling is that the severely degraded soils of East

Africa are far from the carbon equilibrium state for the

recently introduced improved management practices.

This may explain the higher carbon accumulation rates

in these soils during the initial stages after management

transition represented by our results. This situation also

seems to occur for agroforestry, as illustrated by the

similarity of the slopes of the regression lines among

the practices when the discrepant observation for ter-

Table 3 Test results for the comparison of average soil carbon stocks under improved and traditional management practices with-

out (and in parentheses, with) one discrepant traditional control value for a terracing pair (pair 4 in Fig. 3). The differences were

tested on the log scale using two-sided t-type tests. Estimated means for the improved and traditional management practices were

back-transformed to the original scale, and the differences between the resulting values (medians) are presented; n = number of

plots, and df = degrees of freedom

Improved management practice n

Soil C stock, Mg ha�1

Range for traditionally managed plots Difference (Imp.-trad.) t-value df P-value

Agroforestry 16 18–59 11.4 2.73 7 0.03

Restrained grazing 14 14–26 9.6 3.36 6 0.02

Terracing 15 (16) 7–19 (70) 1.7 (�1.2) 1.11 7 0.31 (0.74)

Table 4 Estimated mean soil carbon stocks per equivalent soil mass, i.e., carbon concentrations (kg per Mg soil) for the plots with

improved practices and their adjacent traditionally managed plots with 95% confidence intervals (CIs) for the means; n = number

of replicated plots; relative gain (%) = [(MeanImproved � MeanTraditional)/MeanTraditional] 9 100; one discrepant value for the tradi-

tional control in a terracing pair (pair 4 in Fig. 3) was excluded

Group of plot pairs Management practice n

Soil C, kg per Mg soil

Mean 95% CI for the mean Relative gain (%)

Agroforestry Improved 8 25.4 20.8–31.0 28

Traditional 8 19.9 15.9–25.0
Restrained grazing Improved 7 18.0 14.3–22.8 68

Traditional 7 10.7 7.9–14.6
Terracing Improved 8 7.5 5.5–10.2 29

Traditional 7 5.8 4.0–8.3

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 3739–3749
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racing was excluded. The observation in the agro-

forestry data under the longest management duration,

i.e., 20 years (the lowest green circle in Fig. 5) indicates

a slowing carbon accumulation rate and supports dis-

tance from the steady state as one reason for the differ-

ence between our empirical results and the previous

results obtained by process-based modeling.

Efficiency of pair-matching

One commonly used sampling design in comparison of

soil carbon stock between different management prac-

tices or land uses is to collect soil samples from inde-

pendent field plots. However, the plots can differ in

extraneous, unknown, and thus uncontrolled factors

that could influence soil carbon stock (e.g. soil texture,

soil fertility, precipitation, slope). A common way in

field experiments to minimize the effect of uncontrolled

plot-to-plot variation on the variance of the treatment

comparisons is blocking, in which the plots are

grouped into blocks so that the plots within each block

are as alike as possible and are therefore expected to

give nearly the same observation if the treatments are

equivalent in their effect. Between blocks there can be

substantial differences in plots. The effect of block dif-

ferences is eliminated by making all treatment compar-

isons on the homogeneous plots within each block and

then averaging these comparisons over blocks. In case

of two treatments, for example, the differences between

the observations of the treatments calculated for each

block may be used as observations in the statistical
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Fig. 5 Observed and modeled relationships between rates of

soil carbon stock accumulation under the improved manage-

ment practices and under the traditional practices since conver-

sion to improved management. The carbon stock accumulation

rates were calculated by dividing the carbon stocks by the num-

ber of years the plot had been under improved management.

The common regression line for all of the three improved man-

agement practices (black solid line) is based on data from which

one discrepant observation for terracing (shown by the arrow)

was excluded. The discrepant observation drew the regression

line for terracing toward it and affected the slope considerably

(blue dotted line).

Table 5 Model simplification in analysis of covariance for the rate of soil carbon stock accumulation, under the improved manage-

ment practices since conversion to improved management (y), with the corresponding accumulation rate of the traditional manage-

ment practice used as a covariate (x). To investigate whether the initial model could be simplified, the following regression lines

were fitted to the data: M1) different slopes and different intercepts for the regression lines of the improved practices (the initial

model), M2) equal slopes and different intercepts for the improved practices, M3) equal slopes and equal intercepts for the

improved practices. Management practice was included as a random cluster effect in the latter model. The results are presented

without one discrepant terracing observation (pair 4 in Fig. 3); df = degrees of freedom

(a) Model equations

Management practice M1 M2 M3

Agroforestry y = 1.20 + 1.00x y = 1.22 + 1.00x y = 0.55 + 1.09x

Restrained grazing y = 1.10 + 0.83x y = 0.79 + 1.00x y = 0.55 + 1.09x

Terracing y = �0.04 + 1.25x y = 0.41 + 1.00x y = 0.55 + 1.09x

(b) Tested null hypotheses H0

H0 F-value df P-value Conclusion

Equal slopes in M1 0.40 2, 16 0.67 Support for H0

Equal intercepts in M2 1.17 2, 18 0.33 Support for H0

Slope = 0 in M3 197.50 1, 18 <0.0001 Support for a positive linear association

between the response variable and the covariate
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analysis. The elimination in this way of the effect of

part of the uncontrolled variation due to other factors

than the management was the object of the pair-match-

ing of the plots in our study. Because of the pair-match-

ing the carbon stocks from the same plot pair were

positively correlated, the intraclass correlation coeffi-

cient being 0.7 for terracing (without one discrepant

plot pair), 0.6 for agroforestry, and 0.2 for restrained

grazing. The positive correlations increase the preci-

sions of the comparisons between the improved and

traditional management practices, because the variance

of the differences is smaller if the observations from the

same plot pair are positively correlated than if they are

uncorrelated (Koopmans, 1981). The relative efficiency

of the pair-matching (determined as in Neter et al.,

1996) was 2.7 for terracing indicating that almost three

times as many replications per management practice

would have been required with an unpaired indepen-

dent plot design to achieve the same variance for a

mean difference in carbon stock between the improved

and traditional management practices as was obtained

with the matched pairs design. The relative efficiency

of the pair-matching was 2.0 for agroforestry and 1.1

for restrained grazing. The matched pairs design was

thus beneficial in our study.

In conclusion, the results for the comparison of the

improved and traditional management practices in

varying conditions show that Ethiopian agriculture has

greater potential for soil carbon sequestration than pre-

viously estimated. Higher level for soil carbon seques-

tration compared with previous results is likely

explained by the development and validation of the

process models in temperate conditions, for monocrop-

ping and for conditions where soil carbon stock is clo-

ser to a new management-specific equilibrium than

under improved management in Ethiopia. In data

based studies all efforts to reduce the error variance are

important in order to improve the power of statistical

tests and the precision of estimates. Use of the matched

pairs design is one possibility when feasible.
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