13,794 research outputs found

    Cement-rock interaction : infiltration of a high-pH solution into a fractured granite core

    Get PDF
    Within the framework of the HPF project (Hyperalkaline Plume in Fractured Rock) at the Grimsel Test Site (Switzerland), a small scale core infiltration experiment was performed at the University of Bern. A high-pH solution was continuously injected, under a constant pressure gradient, into a cylindrical core of granite containing a fracture. This high-pH solution was a synthetic version of solutions characteristic of early stages in the degradation of cement. The interaction between the rock and the solutions was reflected by significant changes in the composition of the injected solution, despite the negligible pH-buffering capacity, and a decrease in the permeability of the rock. Changes in the mineralogy and porosity of the fault gouge filling the fracture were only minor. Within the new LCS (Long-Term Cement Studies) project at Grimsel, new one-dimensional reactive transport modeling using CrunchFlow has been used to improve the interpretation of the experimental results. Dispersive and advective solute transport, adsorption processes and mineral reaction kinetics have been taken into account. The evolution of solution composition is mainly controlled by dissolution/precipitation reactions. Adsorption processes (cation exchange, surface complexation) only play a role in the very early stages of the experiment

    Ab initio vibrations in nonequilibrium nanowires

    Get PDF
    We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative predictions for the thermoelectric properties, while for the atomic gold chains we evaluate microscopically the damping of the vibrations, due to the coupling of the chain atoms to the modes in the bulk contacts. Both approaches are based on a combination of density-functional theory, and nonequilibrium Green's functions.Comment: 16 pages, to appear in Progress in Nonequilibrium Green's Functions IV (PNGF4), Eds. M. Bonitz and K. Baltzer, Glasgow, August 200

    Prominence seismology using the period ratio of transverse thread oscillations

    Full text link
    The ratio of the period of the fundamental mode to that of the first overtone of kink oscillations, from here on the "period ratio", is a seismology tool that can be used to infer information about the spatial variation of density along solar magnetic flux tubes. The period ratio is 2 in longitudinally homogeneous thin tubes, but it differs from 2 due to longitudinal inhomogeneity. In this paper we investigate the period ratio in longitudinally inhomogeneous prominence threads and explore its implications for prominence seismology. We numerically solve the two-dimensional eigenvalue problem of kink oscillations in a model of a prominence thread. We take into account three nonuniform density profiles along the thread. In agreement with previous works that used simple piecewise constant density profiles, we find that the period ratio is larger than 2 in prominence threads. When the ratio of the central density to that at the footpoints is fixed, the period ratio depends strongly on the form of the density profile along the thread. The more concentrated the dense prominence plasma near the center of the tube, the larger the period ratio. However, the period ratio is found to be independent of the specific density profile when the spatially averaged density in the thread is the same for all the profiles. An empirical fit of the dependence of the period ratio on the average density is given and its use for prominence seismology is discussed.Comment: Accepted for publication in A&

    Zc(3900)Z_c(3900): Confronting theory and lattice simulations

    Get PDF
    We consider a recent TT-matrix analysis by Albaladejo {\it et al.}, [Phys.\ Lett.\ B {\bf 755}, 337 (2016)] which accounts for the J/ψπJ/\psi\pi and D∗DˉD^\ast\bar{D} coupled--channels dynamics, and that successfully describes the experimental information concerning the recently discovered Zc(3900)±Z_c(3900)^\pm. Within such scheme, the data can be similarly well described in two different scenarios, where the Zc(3900)Z_c(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek {\it et al.} [Phys.\ Rev.\ D {\bf 91}, 014504 (2015)], making thus difficult to disentangle between both possibilities. We also study the volume dependence of the energy levels obtained with our formalism, and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Zc(3900)Z_c(3900) state

    D-instanton and polyinstanton effects from type I' D0-brane loops

    Get PDF
    We study non-perturbative D(-1)-instanton corrections to quartic gauge and curvature couplings in 8d type IIB orientifolds, in terms of a one-loop computation of BPS D0-branes in T-dual type I' models. The complete perturbative and non-perturbative results are determined by the BPS multiplicities of perturbative open strings and D0-brane bound states in the 9d type I' theory. Its modular properties admit a geometric interpretation by lifting to Horava-Witten theory. We use the type I' viewpoint to motivate a proper interpretation of 8d and 4d polyinstanton effects, consistent with heterotic - type II orientifold duality.Comment: 37 pages, 2 figures, clarifications and references adde

    On the properties of surface reconstructed silicon nanowires

    Full text link
    We study by means of density-functional calculations the role of lateral surface reconstructions in determining the electrical properties of silicon nanowires. The different lateral reconstructions are explored by relaxing all the nanowires with crystalline bulk silicon structure and all possible ideal facets that correspond to an average diameter of 1.5 nm. We show that the reconstruction induces the formation of ubiquitous surface states that turn the wires into semi-metallic or metallic

    Bifurcations in the Lozi map

    Get PDF
    We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.Comment: 17 pages, 12 figure

    Efficient implementation of a van der Waals density functional: Application to double-wall carbon nanotubes

    Full text link
    We present an efficient implementation of the van der Waals density functional of Dion et al [Phys. Rev. Lett. 92, 246401 (2004)], which expresses the nonlocal correlation energy as a double spacial integral. We factorize the integration kernel and use fast Fourier transforms to evaluate the selfconsistent potential, total energy, and atomic forces, in N log(N) operations. The resulting overhead in total computational cost, over semilocal functionals, is very moderate for medium and large systems. We apply the method to calculate the binding energies and the barriers for relative translation and rotation in double-wall carbon nanotubes.Comment: 4 pages, 1 figure, 1 tabl
    • …
    corecore