18 research outputs found

    Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry

    Get PDF
    [Image: see text] Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry

    Application of Advanced Non-Linear Spectral Decomposition and Regression Methods for Spectroscopic Analysis of Targeted and Non-Targeted Irradiation Effects in an In-Vitro Model

    Get PDF
    Irradiation of the tumour site during treatment for cancer with external-beam ionising radiation results in a complex and dynamic series of effects in both the tumour itself and the normal tissue which surrounds it. The development of a spectral model of the effect of each exposure and interaction mode between these tissues would enable label free assessment of the effect of radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer, in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made to previously acquired data on cellular survival and DNA double strand break damage. Spectral analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear regression approaches were found to accurately segregate spectra on irradiation type and provide a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable through spectroscopic analysis

    How Peer Mentoring is Reducing Student Dropout Rates

    No full text

    An all-in-one multipurpose robotic platform for the self-optimization, intensification and scale-up of photocatalysis in flow

    No full text
    The optimization, intensification, and scaling up of chemical processes are essential and time-consuming aspects of contemporary chemical manufacturing, necessitating expertise and precision due to their intricate and sensitive nature. However, these process development problems are often carried out independently and consecutively, which can exacerbate the already significant consumption of time and resources involved in the process. In this work, we present a versatile, all-in-one robotic platform for the autonomous optimization, intensification, and scaling up of photocatalytic reactions in flow. This platform overcomes associated challenges through the integration of readily available hardware and custom software, offering a hands-off solution. Our open source platform combines a liquid-handler, syringe pumps, a tunable high-powered photoreactor, cheap IoT devices and an in-line NMR to enable automated, data-rich optimization using a Closed-Loop Bayesian Optimization strategy. The use of a high-power continuous-flow capillary photoreactor enables highly reproducible data to be obtained, as it mitigates issues related to mass, heat, and photon transport that are often the main sources of irreproducibility in photocatalytic transformations. A user-friendly graphical interface allows chemists without programming or machine learning expertise to easily optimize, monitor, and analyze photocatalytic reactions for chemical spaces of both continuous and discrete variables. The system\u27s effectiveness was demonstrated by testing it on challenging photocatalytic transformations, which resulted in increased overall reaction yields and an impressive up to 550-fold improvement in space-time yields compared to batch processes. Additional tests on literature-reported reactions previously optimized in flow yielded substantial increases in both yield and space-time yield. Overall, our studies demonstrate that combining flow-based reactor technology with Bayesian optimization yields superior and unbiased results compared to human effort and intuition in terms of pace, precision, and outcomes for the optimization of photocatalytic reactions. Finally, due to its ability to autonomously generate datasets that include both optimal and suboptimal conditions, our RoboChem platform also contributes to advancing the field towards a digitally-driven era in synthetic chemistry

    Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb\bf V_{tb}

    No full text
    We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb−1^{−1} per experiment. The t-channel cross section is measured to be σt_t=2.25−0.31+0.29_{-0.31}^{+0.29} pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σs+t_{s+t}=3.30−0.40+0.52_{-0.40}^{+0.52} pb, without assuming the standard model value for the ratio σs_s/σt_t. The resulting value of the magnitude of the top-to-bottom quark coupling is |Vtb_{tb}|=1.02−0.05+0.06_{-0.05}^{+0.06}, corresponding to |Vtb_{tb}|>0.92 at the 95% C.L

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text
    International audienceDrell-Yan lepton pairs produced in the process pp¯→ℓ+ℓ-+X through an intermediate Îł*/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. The CDF and D0 experiments have measured the effective-leptonic electroweak mixing parameter sin2Ξefflept using electron and muon pairs selected from the full Tevatron proton-antiproton data sets collected in 2001-2011, corresponding to 9–10  fb-1 of integrated luminosity. The combination of these measurements yields the most precise result from hadron colliders, sin2Ξefflept=0.23148±0.00033. This result is consistent with, and approaches in precision, the best measurements from electron-positron colliders. The standard model inference of the on-shell electroweak mixing parameter sin2ΞW, or equivalently the W-boson mass MW, using the zfitter software package yields sin2ΞW=0.22324±0.00033 or equivalently, MW=80.367±0.017  GeV/c2

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text
    corecore