455 research outputs found

    Pionic Deuterium

    Get PDF
    The strong interaction shift and broadening in pionic deuterium have been remeasured with high statistics by means of the (3p-1s) X-ray transition using the cyclotron trap and a high-resolution crystal spectrometer. Preliminary results are (-2325+/-31) meV (repulsive) for the shift and (1171+23/-49} meV for the width, which yields precise values for the pion-deuteron scattering length and the threshold parameter for pion production.Comment: Conf. Proc. Few Body 19 (FB19), August 31 - September 5, 2009, Bonn, Germany 9 pages, 13 figure

    Precision determination of the dpi -> NN transition strength at threshold

    Get PDF
    An unusual but effective way to determine at threshold the dpi -> NN transition strength is to exploit the hadronic ground-state broadening in pionic deuterium, accessible by x-ray spectroscopy. The broadening is dominated by the true absorption channel dpi- -> nn, which is related to s-wave pion production pp -> dpi+ by charge symmetry and detailed balance. Using the exotic atom circumvents the problem of Coulomb corrections to the cross section as necessary in the production experiments. Our dedicated measurement finds (1171+23/-49) meV for the broadening yielding (252+5/-11) \mub.Comment: 4 pages, 2 figures, 1 tabl

    Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state

    Full text link
    Although not an intrinsic superconductor, it has been long--known that, when intercalated with certain dopants, graphite is capable of exhibiting superconductivity. Of the family of graphite--based materials which are known to superconduct, perhaps the most well--studied are the alkali metal--graphite intercalation compounds (GIC) and, of these, the most easily fabricated is the C8{}_8K system which exhibits a transition temperature Tc≃0.14\bm{T_c\simeq 0.14} K. By increasing the alkali metal concentration (through high pressure fabrication techniques), the transition temperature has been shown to increase to as much as 5\bm 5 K in C2{}_2Na. Lately, in an important recent development, Weller \emph{et al.} have shown that, at ambient conditions, the intercalated compounds \cyb and \cca exhibit superconductivity with transition temperatures Tc≃6.5\bm{T_c\simeq 6.5} K and 11.5\bm{11.5} K respectively, in excess of that presently reported for other graphite--based compounds. We explore the architecture of the states near the Fermi level and identify characteristics of the electronic band structure generic to GICs. As expected, we find that charge transfer from the intercalant atoms to the graphene sheets results in the occupation of the π\bm\pi--bands. Yet, remarkably, in all those -- and only those -- compounds that superconduct, we find that an interlayer state, which is well separated from the carbon sheets, also becomes occupied. We show that the energy of the interlayer band is controlled by a combination of its occupancy and the separation between the carbon layers.Comment: 4 Figures. Please see accompanying experimental manuscript "Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca" by Weller et a

    The merger of vertically offset quasi-geostrophic vortices

    Get PDF
    We examine the critical merging distance between two equal-volume, equal-potential-vorticity quasi-geostrophic vortices. We focus on how this distance depends on the vertical offset between the two vortices, each having a unit mean height-to-width aspect ratio. The vertical direction is special in the quasi-geostrophic model (used to capture the leading-order dynamical features of stably stratified and rapidly rotating geophysical flows) since vertical advection is absent. Nevertheless vortex merger may still occur by horizontal advection. In this paper, we first investigate the equilibrium states for the two vortices as a function of their vertical and horizontal separation. We examine their basic properties together with their linear stability. These findings are next compared to numerical simulations of the nonlinear evolution of two spheres of potential vorticity. Three different regimes of interaction are identified, depending on the vertical offset. For a small offset, the interaction differs little from the case when the two vortices are horizontally aligned. On the other hand, when the vertical offset is comparable to the mean vortex radius, strong interaction occurs for greater horizontal gaps than in the horizontally aligned case, and therefore at significantly greater full separation distances. This perhaps surprising result is consistent with the linear stability analysis and appears to be a consequence of the anisotropy of the quasi-geostrophic equations. Finally, for large vertical offsets, vortex merger results in the formation of a metastable tilted dumbbell vortex.Publisher PDFPeer reviewe

    Candidate chiral twin bands in the odd-odd nucleus 132 Cs : Exploring the limits of chirality in the mass A ≈ 130 region

    Get PDF
    High-spin states in the doubly odd N=77N=77 nucleus 132Cs{}^{132}\mathrm{Cs} have been studied. The known positive-parity structures have been extended. \ensuremath{\gamma}-ray linear-polarization and angular-correlation measurements have been performed to establish the spin and parity assignment of these structures. A new chiral partner of the \ensuremath{\pi}{h}_{11/2}\ensuremath{\bigotimes}\ensuremath{\nu}{h}_{11/2} band has been proposed. Three-dimensional tilted axis cranking model calculations have been performed and compared with the experimental results

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells

    Infant head growth in male siblings of children with and without autism spectrum disorders

    Get PDF
    Previous research has indicated that children with autism exhibit accelerated head growth (HG) in infancy, although the timing of acceleration varies between studies. We examined infant HG trajectory as a candidate autism endophenotype by studying sibling pairs. We retrospectively obtained serial head orbitofrontal circumference measurements of: a) 48 sibling pairs in which one (n = 28) or both (n = 20) sibs were affected by an autism spectrum disorder (ASD); and b) 85 control male sibling pairs. Rate of HG of ASD subjects was slightly accelerated compared to controls, but the magnitude of difference was below the limit of reliability of standard measurement methods. Sibling intra class correlation for rate of HG was highly statistically significant; the magnitude was significantly stronger among autism-affected families (ICC = .63) than among controls (ICC = .26), p < .01. Infant HG trajectory appears familial—possibly endophenotypic—but was not a reliable marker of autism risk among siblings of ASD probands in this sample

    Targeting of Pseudorabies Virus Structural Proteins to Axons Requires Association of the Viral Us9 Protein with Lipid Rafts

    Get PDF
    The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package
    • …
    corecore