192 research outputs found

    Axillary Arch (Langer’s Arch) in an 80 year-old White Male Cadaver

    Get PDF
    Recognizing the presence of an Axillary arch (Langer’s arch or muscle) can be important for clinical associations, such as when patients present with compression neuropathies and syndromes related to the upper extremity. Its presence is also relevant during surgical interventions involving the axillary fossa, such as sentinel node biopsy axillary lymph node dissection and pectoralis muscle flaps. While neglecting to identify variations rarely leads to an increase in mortality, it is essential to identify for clinical relevance. It is similarly important to anatomical instructors in the education of future medical providers. During cadaveric dissection of fifty cadavers, we observed a unilateral Axillary arch (Langer’s arch or muscle) found on the left side of an 80 year-old White Male cadaver inserting onto the tendon of the pectoralis major muscle. This anatomical variation is commonly referenced in the literature for its clinical significance. Operating surgeons, vascular interventionalists, and oncologists should be aware of this anatomical variant as it occurs while treating diverse patient populations

    A model for assessing water quality risk in catchments prone to wildfire

    Get PDF
    Post-fire debris flows can have erosion rates up to three orders of magnitude higher than background rates. They are major sources of fine suspended sediment, which is critical to the safety of water supply from forested catchments. Fire can cover parts or all of these large catchments and burn severity is often heterogeneous. The probability of spatial and temporal overlap of fire disturbance and rainfall events, and the susceptibility of hillslopes to severe erosion determine the risk to water quality. Here we present a model to calculate recurrence intervals of high magnitude sediment delivery from runoff-generated debris flows to a reservoir in a large catchment (>100 km2) accounting for heterogeneous burn conditions. Debris flow initiation was modelled with indicators of surface runoff and soil surface erodibility. Debris flow volume was calculated with an empirical model, and fine sediment delivery was calculated using simple, expert-based assumptions. In a Monte-Carlo simulation, wildfire was modelled with a fire spread model using historic data on weather and ignition probabilities for a forested catchment in central Victoria, Australia. Multiple high intensity storms covering the study catchment were simulated using Intensity–Frequency–Duration relationships, and the runoff indicator calculated with a runoff model for hillslopes. A sensitivity analysis showed that fine sediment is most sensitive to variables related to the texture of the source material, debris flow volume estimation, and the proportion of fine sediment transported to the reservoir. As a measure of indirect validation, denudation rates of 4.6–28.5 mm ka−1 were estimated and compared well to other studies in the region. From the results it was extrapolated that in the absence of fire management intervention the critical sediment concentrations in the studied reservoir could be exceeded in intervals of 18–124 years

    Performance of GEDI space-borne LiDAR for quantifying structural variation in the temperate forests of South-Eastern Australia

    Get PDF
    Monitoring forest structural properties is critical for a range of applications because structure is key to understanding and quantifying forest biophysical functioning, including stand dynamics, evapotranspiration, habitat, and recovery from disturbances. Monitoring of forest structural properties at desirable frequencies and cost globally is enabled by space-borne LiDAR missions such as the global ecosystem dynamics investigation (GEDI) mission. This study assessed the accuracy of GEDI estimates for canopy height, total plant area index (PAI), and vertical profile of plant area volume density (PAVD) and elevation over a gradient of canopy height and terrain slope, compared to estimates derived from airborne laser scanning (ALS) across two forest age-classes in the Central Highlands region of south-eastern Australia. ALS was used as a reference dataset for validation of GEDI (Version 2) dataset. Canopy height and total PAI analyses were carried out at the landscape level to understand the influence of beam-type, height of the canopy, and terrain slope. An assessment of GEDI’s terrain elevation accuracy was also carried out at the landscape level. The PAVD profile evaluation was carried out using footprints grouped into two forest age-classes, based on the areas of mountain ash (Eucalyptus regnans) forest burnt in the Central Highlands during the 1939 and 2009 wildfires. The results indicate that although GEDI is found to significantly under-estimate the total PAI and slightly over-estimate the canopy height, the GEDI estimates of canopy height and the vertical PAVD profile (above 25 m) show a good level of accuracy. Both beam-types had comparable accuracies, with increasing slope having a slightly detrimental effect on accuracy. The elevation accuracy of GEDI found the RMSE to be 10.58 m and bias to be 1.28 m, with an R2 of 1.00. The results showed GEDI is suitable for canopy densities and height in complex forests of south-eastern Australia

    Designing tools to predict and mitigate impacts on water quality following the Australian 2019/2020 wildfires: Insights from Sydney's largest water supply catchment

    Get PDF
    The 2019/2020 Australian bushfires (or wildfires) burned the largest forested area in Australia's recorded history, with major socio-economic and environmental consequences. Among the largest fires was the 280 000 ha Green Wattle Creek Fire, which burned large forested areas of the Warragamba catchment. This protected catchment provides critical ecosystem services for Lake Burragorang, one of Australia's largest urban supply reservoirs delivering ~85% of the water used in Greater Sydney. Water New South Wales (WaterNSW) is the utility responsible for managing water quality in Lake Burragorang. Its postfire risk assessment, done in collaboration with researchers in Australia, the UK, and United States, involved (i) identifying pyrogenic contaminants in ash and soil; (ii) quantifying ash loads and contaminant concentrations across the burned area; and (iii) estimating the probability and quantity of soil, ash, and associated contaminant entrainment for different rainfall scenarios. The work included refining the capabilities of the new WEPPcloud-WATAR-AU model (Water Erosion Prediction Project cloud-Wildfire Ash Transport And Risk-Australia) for predicting sediment, ash, and contaminant transport, aided by outcomes from previous collaborative postfire research in the catchment. Approximately two weeks after the Green Wattle Creek Fire was contained, an extreme rainfall event (~276 mm in 72 h) caused extensive ash and sediment delivery into the reservoir. The risk assessment informed on-ground monitoring and operational mitigation measures (deployment of debris-catching booms and adjustment of the water supply system configuration), ensuring the continuity of safe water supply to Sydney. WEPPcloud-WATAR-AU outputs can prioritize recovery interventions for managing water quality risks by quantifying contaminants on the hillslopes, anticipating water contamination risk, and identifying areas with high susceptibility to ash and sediment transport. This collaborative interaction among scientists and water managers, aimed also at refining model capabilities and outputs to meet managers' needs, exemplifies the successful outcomes that can be achieved at the interface of industry and science. Integr Environ Assess Manag 2021;17:1151–1161. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).During manuscript preparation J. Neris, C. Santin, R. Lew, and S.H. Doerr were supported by a Natural Environment Research Council grant (NE/R011125/1)

    Modelling the spatial extent of post-fire sedimentation threat to estimate the impacts of fire on waterways and aquatic species

    Get PDF
    Aim: Fires can severely impact aquatic fauna, especially when attributes of soil, topography, fire severity and post-fire rainfall interact to cause substantial sedimentation. Such events can cause immediate mortality and longer-term changes in food resources and habitat structure. Approaches for estimating fire impacts on terrestrial species (e.g. intersecting fire extent with species distributions) are inappropriate for aquatic species as sedimentation can carry well downstream of the fire extent, and occur long after fire. Here, we develop an approach for estimating the spatial extent of fire impacts for aquatic systems, across multiple catchments. Location: Southern Australian bioregions affected by the fires in 2019–2020 that burned >10 million ha of temperate and subtropical forests. Methods: We integrated an existing soil erosion model with fire severity mapping and rainfall data to estimate the spatial extent of post-fire sedimentation threat in waterways and in basins and the potential exposure of aquatic species to this threat. We validated the model against field observations of sedimentation events after the 2019–20 fires. Results: While fires overlapped with ~27,643 km of waterways, post-fire sedimentation events potentially occurred across ~40,449 km. In total, 55% (n = 85) of 154 basins in the study region may have experienced substantial post-fire sedimentation. Ten species—including six Critically Endangered—were threatened by post-fire sedimentation events across 100% of their range. The model increased the estimates for potential impact, compared to considering fire extent alone, for >80% of aquatic species. Some species had distributions that did not overlap with the fire extent, but that were entirely exposed to post-fire sedimentation threat. Conclusions: Compared with estimating the overlap of fire extent with species' ranges, our model improves estimates of fire-related threats to aquatic fauna by capturing the complexities of fire impacts on hydrological systems. The model provides a method for quickly estimating post-fire sedimentation threat after future fires in any fire-prone region, thus potentially improving conservation assessments and informing emergency management interventions

    The acquisition of Sign Language: The impact of phonetic complexity on phonology

    Get PDF
    Research into the effect of phonetic complexity on phonological acquisition has a long history in spoken languages. This paper considers the effect of phonetics on phonological development in a signed language. We report on an experiment in which nonword-repetition methodology was adapted so as to examine in a systematic way how phonetic complexity in two phonological parameters of signed languages — handshape and movement — affects the perception and articulation of signs. Ninety-one Deaf children aged 3–11 acquiring British Sign Language (BSL) and 46 hearing nonsigners aged 6–11 repeated a set of 40 nonsense signs. For Deaf children, repetition accuracy improved with age, correlated with wider BSL abilities, and was lowest for signs that were phonetically complex. Repetition accuracy was correlated with fine motor skills for the youngest children. Despite their lower repetition accuracy, the hearing group were similarly affected by phonetic complexity, suggesting that common visual and motoric factors are at play when processing linguistic information in the visuo-gestural modality

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2 ) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2 mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability
    • …
    corecore