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Abstract: Monitoring forest structural properties is critical for a range of applications because
structure is key to understanding and quantifying forest biophysical functioning, including stand dy-
namics, evapotranspiration, habitat, and recovery from disturbances. Monitoring of forest structural
properties at desirable frequencies and cost globally is enabled by space-borne LiDAR missions such
as the global ecosystem dynamics investigation (GEDI) mission. This study assessed the accuracy
of GEDI estimates for canopy height, total plant area index (PAI), and vertical profile of plant area
volume density (PAVD) and elevation over a gradient of canopy height and terrain slope, compared
to estimates derived from airborne laser scanning (ALS) across two forest age-classes in the Central
Highlands region of south-eastern Australia. ALS was used as a reference dataset for validation of
GEDI (Version 2) dataset. Canopy height and total PAI analyses were carried out at the landscape
level to understand the influence of beam-type, height of the canopy, and terrain slope. An assessment
of GEDI’s terrain elevation accuracy was also carried out at the landscape level. The PAVD profile
evaluation was carried out using footprints grouped into two forest age-classes, based on the areas
of mountain ash (Eucalyptus regnans) forest burnt in the Central Highlands during the 1939 and
2009 wildfires. The results indicate that although GEDI is found to significantly under-estimate
the total PAI and slightly over-estimate the canopy height, the GEDI estimates of canopy height
and the vertical PAVD profile (above 25 m) show a good level of accuracy. Both beam-types had
comparable accuracies, with increasing slope having a slightly detrimental effect on accuracy. The
elevation accuracy of GEDI found the RMSE to be 10.58 m and bias to be 1.28 m, with an R2 of
1.00. The results showed GEDI is suitable for canopy densities and height in complex forests of
south-eastern Australia.

Keywords: space-borne LiDAR; GEDI; airborne LiDAR; ALS; forest structure metrics; canopy height;
vertical profile metrics

1. Introduction

Remote sensing of forest structural properties has replaced traditional ground survey
methods for many applications in the past 1–2 decades due to the ease of capturing data at
large spatial scales. LiDAR (light detection and ranging) has emerged as a frequently used
technique because of the three-dimensionality of the point clouds, the ability to distinguish
structural characteristics in height increments, and for the ground return data to develop
digital elevation models (DEMs). These attributes make LiDAR a useful method compared
to other remotely sensed data such as passive optical (e.g., hyperspectral) and active sensors
(e.g., radar) for particular applications, including stand height and vertical and horizontal
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structure. Furthermore, LiDAR overcomes some of the limitations of other methods; for
example, passive reflectance-based sensors are non-linear and have been found to saturate
in high biomass areas (e.g., >100 Mg ha−1) [1,2]. With radar, sensors are found to saturate
at biomass densities higher than 200 Mg ha−1 [3,4].

Airborne laser scanning (ALS) has been widely used in forest science [1,5–8] and has
been proven to have sufficient accuracy for many applications in a variety of environ-
ments [1,9–11]. However, there are challenges in its use where high resolution data are
required, such as individual tree and crown delineation in forests with complex structures
and asymmetrical crowns [12]. One solution to this is higher resolution data capture using
unoccupied aerial vehicle (UAV)-mounted sensors that can generate orders of magnitude
greater return densities than ALS [12]. However, both these platforms have the drawback
of repeatability and coverage. That is, without large budgets, it is not feasible to capture
ALS or UAV-mounted LiDAR at high spatial or temporal coverage. While this may not be a
problem for some applications, these limitations can limit tracking of spatial and temporal
changes over large areas, including forest recovery from wildfire.

The increasing change in global fire regimes under climate change [13–16], along with
the increasing importance of measuring forest structural properties for carbon accounting
and monitoring [17–19], highlights the benefit and importance of being able to actively
measure forest structure affordably at higher return intervals. Furthermore, for developing
countries or small organizations and communities, the cost of LiDAR capture and complex
processing can be prohibitive. These limitations of ALS approaches highlight the potential
benefits that space-borne LiDAR, such as the global ecosystem dynamics investigation
(GEDI) mission [20–22], can have in measuring forest structural attributes at the needed
cost and return interval.

1.1. Metrics to Estimate Forest Structure Using LiDAR

The structural properties of forest stands and plots are characterized using metrics such
as mean, maximum, or percentiles of canopy height, plant area volume density (PAVD)
curves, basal area, plant area index (PAI), and above-ground biomass models [23–25].
LiDAR (particularly airborne discrete-return LiDAR) has been used in high biomass, struc-
turally complex forests as it is able to penetrate denser canopies than with optical and radar
methods [26]. For example, in south-eastern Australia, airborne LiDAR has been used to
model growth in eucalypt forests with variable structure [27]; estimate transpiration using
LiDAR indices to upscale ground observations [28]; and for predicting temperate forest
stand types using only structural profiles [29].

1.2. The Use of Space-Borne LiDAR Platforms (GEDI) in Remote Sensing of Forests

Recently, the potential to overcome the spatio-temporal and cost issues associated with
ALS and UAV platforms has been enhanced by space-borne LiDAR platforms [30,31]. The
first space-borne LiDAR mission was the geoscience laser altimeter system (GLAS, 2003–2007),
instrument onboard NASA’s ice, cloud, and land elevation satellite (ICESat-1) [9,32]. Although
a promising development, the mission was primarily aimed at sensing ice sheets, and did
not have comprehensive coverage for forests in mid-latitudes [33]. Researchers reported
3–4 m canopy height errors when ground-truthed [9,32]. The most recent mission, NASA’s
GEDI (launched in late 2018), has a focus on capturing terrestrial ecosystems [12]. GEDI
enables access to LiDAR data for assessing forest structural properties at larger spatial
scales and shorter temporal resolution than has previously been possible [34,35]. This now
allows forest structural attributes such as canopy height and vegetation density (i.e., PAI
and PAVD) to be regularly determined at time-scales and costs previously attainable only
from optical satellite-based methods [36,37]. However, there is a clear need to assess the
accuracy of GEDI for use across a broad range of forest ecosystems for multiple metrics.

There has been a proliferation of GEDI studies recently, given its promise. At two sites
in Germany, Adam et al. [38] evaluated the accuracy of GEDI (Version 1) based on ALS
data acquired from 2014 to 2019, reporting median and median absolute deviation (MAD)
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values of −0.259 m and 1.67 m, respectively, for terrain elevation errors; and 2.11 m and
2.98 m for canopy height, respectively, at the forested site. Using concurrent ALS data of
2019 from across the USA as reference, Liu et al. [39] examined the performance of GEDI
terrain and canopy height estimates and found that GEDI yielded terrain elevation and
canopy height estimates with root mean squared errors (RMSEs) of 4.03 m and 5.02 m,
respectively. In Spain, Guerra-Hernandez and Pascual [40] assessed the terrain height
accuracy of GEDI based on 2015–2017 ALS data, and reported an RMSE value of 4.48 m.
Potapov et al. [41] mapped global forest canopy height at 30 m resolution by integrating
GEDI and Landsat data, and compared to reference ALS data, found an RMSE and MAE of
9.07 m and 6.36 m, respectively. In Australia, using ALS data of up to 4 years older than
GEDI, Huetterman et al. [42] found GEDI canopy height accuracy of RMSE: 9.6 m and bias:
−1.6 m. A number of additional studies have examined various technical issues such as
data fusion and simulation e.g., [33,35,41].

Overall, these studies demonstrate the utility of GEDI data for estimating forest
structure across a range of forest systems. However, the variation in error suggests that its
use should be evaluated specific to each forest type and location. Moreover, total PAI and
canopy vertical profile (PAVD profile) performance of GEDI were not examined in these
studies. In particular, wet/damp eucalypt forests represent ecosystems that are structurally
complex and as such are a good test of the capabilities of GEDI, which motivated this study.

1.3. Forest Structural Properties

This study focuses on three important forest structural properties, these being canopy
height, PAI, and PAVD. The canopy height used was the 95th percentile relative height
(referred to as RH95). This is a commonly used height metric derived from LiDAR in forest
applications [43,44] with this being a way of moderating the impact of outlier returns in
LiDAR studies and representing the dominant canopy height [45].

Canopy height is the average height of all or a subset of trees within a designated
area such as an inventory plot or a forest stand. Common canopy height metrics include
“dominant height” (mean height of all trees that are not over-topped, or the dominant
trees) and “Lorey’s height” (height of all trees in a plot weighted by their basal area) [46].
From the normalized point cloud for an areal unit, the canopy height can be inferred as the
distance between the ground and a top-of-canopy LiDAR metric such as the maximum or a
certain percentile of LiDAR returns [5]. For biodiversity studies, a LiDAR-derived absolute
canopy height accuracy of ±2 m is required, and ±1 m is desired [22]. The fairly stringent
requirement in terms of the accuracy of height measurements is in part related to young
forest or shrub vegetation, where an absolute error of ±1 m, may represent a very high
relative error.

PAI is a critical vegetation structural parameter used in modeling exchanges of en-
ergy [47], carbon, and water in ecosystems, and to monitor the status of forests. In mountain
ash forests, PAI is strongly related to the moisture condition of fine fuels, which is used
to assess the potential for wildfires in the region [48]. The sensitivity of global climate
and biodiversity models to PAI [23–25] requires that uncertainty at the pixel scale for PAI
mapping should be around ±15%, as has been proposed by the global terrestrial observing
system [24].

PAVD curves describe the areal density of vegetation at different increments through-
out the vertical profile of the forest [29]. This can be useful in distinguishing between
older secondary forests and old-growth forests, which, while difficult using canopy height
alone, may be possible using vertical PAVD information from LiDAR. This has significance
for efforts to map and monitor successional forests and degraded areas (for example, as
part of REDD + activities [49]). For example, Griebel et al. [50] used PAVD profile curves
to detect redistribution of vegetation between the canopy and understory layers under
various conditions, which would not have been possible using PAI alone.
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1.4. Aims and Objectives

The objectives of this study are to investigate the ability of space-borne LiDAR data
from the GEDI mission to characterize the structure of temperate eucalyptus forests found
in south-eastern Australia. Three canopy structure metrics are chosen for this evaluation:
canopy height, PAI, and vertical profiles of PAVD. The reference values for these three
metrics are taken from ALS data which were flown over the study area in 2015–2016. The
assumption in this study is that the ALS values are accurate enough to be considered refer-
ence values, as validated in recent studies that have used ALS in south-eastern Australian
forests in conjunction with ground-truth data [51–54]. Additionally, we evaluate GEDI’s
terrain elevation accuracy using the same ALS dataset.

2. Study Area and Data
2.1. Study Area

The study area is located in the Central Highlands region of Victoria and covers
the area that has ALS LiDAR data available from a Department of Environment, Land,
Water, and Planning (DELWP) LiDAR project in 2015–2016. This forested region is located
approximately 100 km north-east of Melbourne (Figure 1). The long-term mean annual
precipitation is 1343 mm, with most of the precipitation occurring in winter. It has a
temperate climate with mean daily minimum temperatures ranging from 8 ◦C in July
(winter) to 23 ◦C in February (summer), and mean daily maximum temperatures from
11 ◦C (July) to 28 ◦C (February; Marysville weather station) [51]. The area has a variable
topography and complex terrain (elevation: 352–762 m; slope: 2–30◦).

Figure 1. Map of the study area within (a) Australia and (b) the state of Victoria. The main map (c) de-
picts two tracks of GEDI footprints (green) used for the landscape level analysis. GEDI footprints that
overlap mountain ash forest areas burnt in 2009 and 1939 are displayed in red and blue, respectively.
The outline polygon in blue showing the study area is the forested area covered by an airborne LiDAR
scanning (ALS) survey project in the Central Highlands of Victoria in 2015–2016 carried out by the
Victorian Department of Environment, Land, Water, and Planning (DELWP).
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At the stand level, the temperate forests of this region fall into three broad categories:
cool temperate rainforest, wet sclerophyll eucalyptus, and a transition zone of cool tem-
perate mixed (“ecotone”) stands. These forests are characterized by complex, multi-strata
structure. Rainforest stands are dominated by 30–40 m tall myrtle beech (Nothofagus cun-
ninghamii), Australian blackwood (Acacia melanoxylon), and silver wattle (A. dealbata), with
understory species reaching up to 20 m in height. The lower 5 m strata are dominated by
tall tree ferns (Cyathea australis and Dicksonia antarctica), while ferns less than 1 m dom-
inate the ground layer. Rainforest stands may occasionally include emergent mountain
ash (Eucalyptus regnans). Wet sclerophyll eucalyptus stands in the study area range from
stands dominated by mountain ash up to 80 m in height to smaller eucalyptus species,
which range 30–60 m in height (Messmate (E. obliqua), grey gum (E. cypellocarpa), alpine
ash (E. delegatensis), shining gum (E. nitens)). The understory is occasionally dominated
by acacias (typically A. dealbata) reaching up to 30 m in height. However, the lower 20 m
of these forests consists of smaller trees and single-stemmed tall shrubs. Ecotone stands
generally have a rainforest understory co-existing under a eucalypt overstory in areas
between distinct rainforest and eucalypt stands [29]. The ash forests (both E. regnans and
E. delegatensis) are highly valued forests critical for the provision of ecosystem services such
as water, carbon, and biodiversity, and are facing the compounded threats of wildfire and
climate change.

2.2. Spaceborne LiDAR Dataset

The spaceborne LiDAR data from the GEDI mission [20] is delivered as a suite of
science data products categorized into various levels which include footprint level and
gridded data sets [20]. For this study, the data products used were the footprint level
datasets (Level 2 data) which contain the footprint level canopy height metrics (Level 2A
data), total PAI and vertical profile metrics (Level 2B data). The corresponding gridded
datasets (Level 3) were created by spatially interpolating the footprint level estimates of
canopy height and vertical profile metrics with their uncertainties onto grids with cell
sizes of 1 km × 1 km using statistical theory [20,55]. The GEDI data were collected on
20 July 2019 and 14 August 2019. The GEDI data technical details are summarized in
Table 1.

Table 1. Details of the GEDI dataset used in the study.

Platform: International Space Station

Coverage Extent: Between 51.6 N and S Latitude

File numbers of the two GEDI tracks used:

(i) GEDI02_B_2019201045445_O03406

_01_T04012_02_003_01_V002.h5

(ii) GEDI02_B_2019226184840_O03803

_01_T00860_02_003_01_V002.h5

Date and time of acquisition of the two tracks: 20 July 2019 and
14 August 2019

Footprint size: ~25 m diameter

Along-track spacing: 60 m

Across-track spacing: 600 m

Swath width: 4.2 km

Beams used: 4 power beams and 4 coverage beams

2.3. Airborne LiDAR Data

The discrete-return airborne LiDAR data used were obtained from the Victorian
Department of Environment, Land, Water, and Planning (DELWP). The LiDAR point cloud
data were provided in the form of classified LiDAR returns containing ground, vegetation,
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and other classes. This LiDAR flight was flown in January to May 2016. The ALS data
technical details are summarized in Table 2.

Table 2. Details of airborne LiDAR dataset used.

Title of Project: 2015–2016 Central Highlands LiDAR Project

Purpose: To map the key forest structure
Coverage extent: 4580 km2 northeast of Melbourne in Victoria

Date of acquisition: January to May 2016
Sensor Name: Trimble AX60

Avg. Point Density: 4.38 pts/m2

Nominal density: 4 outgoing laser pulses per square meter with
50% overlap in swaths

Footprint Size: 0.22 m diameter
Number of returns: Up to 7 returns

Data Format: LAS 1.3, Waveform Packets

3. Methodology

For this study, the initial steps were the acquisition and processing of the GEDI and
ALS datasets to derive the metrics of interest (canopy height, PAI, PAVD, and elevation) for
comparison. This was followed by carrying out a statistical analysis of their accuracy at
two scales: one at the landscape level using all the sample GEDI footprints (for the canopy,
height, PAI, and elevation); and for the other, a case study was done for two age-classes
of mountain ash forests (for the PAVD profile and PAI). The overall methodology for the
comparative accuracy analysis of the ALS and GEDI sensors for the metrics of interest is
shown in Figure 2 and described below.

Figure 2. Overall methodology of the study. The input data layers are shown by the parallelograms
and the rectangles show the process steps followed. The blue boxes and section numbers describe the
location in the manuscript where each method is described.



Remote Sens. 2022, 14, 3615 7 of 26

3.1. GEDI Data Processing

The GEDI data used in the study were downloaded from the NASA data portal
(https://lpdaac.usgs.gov (accessed on 11 May 2021)). The version 2 data released in April
2021 (https://lpdaac.usgs.gov/news/release-gedi-version-2-data-products/ (accessed on
11 May 2021)) were used as they have improved geolocation accuracy due to improved
calibration through post-processing and pointing, ranging, and timing calibration updates
using the past year of data collection. The calibration process is expected to reduce the
geolocation error (1σ) down to 8 m horizontal and 10 cm vertical from the earlier ver-
sion 1 horizontal accuracy (1σ) of 20 m and the vertical accuracy on the order of 50 cm [20].

The footprints from two tracks of GEDI footprints (Figure 1; T04012 and T00860 in)
Table 1 acquired in July and August of 2019, respectively, were used for this study. Each
GEDI track has 8 sub-tracks, 4 from a “coverage” beam and 4 from the two “full-power”
beams of the 3 laser beams comprising the GEDI laser system. At any one instant, 4 laser
pulses from the 3 lasers hit the ground. These are then dithered across-track to produce
a complement of 8 tracks, with a gap of one shot along-track [20]. As the 4 “coverage”
sub-track footprints have only half the power of the full-power tracks, the strength of its
penetration of the canopy foliage and the subsequent return signal waveform is expected to
be much weaker. The footprints were then filtered to remove the poor-quality LiDAR shots
using the available quality assurance flags supplied with the GEDI data (quality_flag = 1,
degrade_flag = 0), and a sensitivity threshold of >0.95 was applied.

Applying these quality control filter criteria together with the removal of footprints
located near the edge of the ALS LiDAR tiles (to avoid edge-effects during clipping of the
ALS point-clouds) and footprints with data errors in the ALS point-cloud data resulted in
reducing the number of useable footprints from the two GEDI tracks (T04012 and T00860)
used in the landscape-level analysis, from 17,075 to 11,832 footprints.

3.1.1. Elevation and Canopy Height from the Level 2A Data

L2A processing uses the geolocated received waveform (L1B product) and computes
footprint-level ground elevation and canopy heights. The elevation value used from this
product was the “elev_lowestmode” value. This value corresponds to the elevation of the
center of lowest mode relative to reference ellipsoid [55]. The canopy height is calculated by
subtracting the elevation of the highest detected return from the elevation of the center of
the lowest mode (which is interpreted as the “ground” elevation) in the received waveform.
These ranging points are identified during processing of the received waveform, and first
and last sample bin geolocation in the L1B product are interpolated to geolocate the ranging
points. The received waveform processing involves smoothing the signal to minimize noise,
identification of signal and noise sections of the waveform, and locating the center of each
mode between the highest and lowest detected returns in each waveform [56].

The L2A product also includes the height above the ground of each energy quantile in
the received waveform and these are expressed as a height above the ground.

3.1.2. Total PAI and Vertical Profile Metrics from the Level 2B Data

The GEDI Level 2B data product contains the total PAI and footprint-level vertical
profile metrics of PAVD, which are evaluated in this study. The vertical canopy energy
distribution is calculated by subtracting the ground component from the received wave-
form [55]. Then, the vertically resolved directional canopy gap probability of an individual
footprint is estimated using the vertical canopy energy distribution and ground energy as
given by [57]. The ratio of canopy to ground reflectance is a necessary input parameter
in the estimation process, which is extracted from a gridded ancillary dataset, which is
initialized with constants over different biomes [58].

PAI used in this approach is equivalent to deriving LAI from the vertical distribution
of canopy gap probability [33], because branches and trunks also reflect laser energy.
Additionally, variations in leaf angle distribution and clumping effects are ignored in the
calculation of PAI, by assuming a random distribution of vegetation elements [20]. The
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L2B Algorithm Theoretical Basis document [55] describes the algorithm used to derive the
GEDI values of PAI and vertical canopy metrics (VPM) as given below:

P(θ) = e−G(θ)× LAI
cos (θ) (1)

where P(θ) is the gap probability within the canopy with a view zenith angle of θ and G(θ)
is the projection coefficient representing unit leaf area on the canopy layer perpendicular
to the view direction. For GEDI, we assume the viewing zenith angle is constant at 0, and
hence we only need information of gap probability P(θ) and the projection coefficient (G) to
obtain PAI.

P(z) = 1− f cover(z) = 1− Rv(z)
Rv(0)

1

1 + ρvRg
ρvRg(0)

(2)

where P(z) represents the gap probability, and fcover(z) the canopy cover percentage above
a particular height z within the canopy. The terms Rv(z), Rv(0), and Rg are the integrated
laser energy returns from the canopy top to height z, from canopy top to canopy bottom,
and from the ground return individually. The canopy and ground reflectance are ρv and
ρg, respectively. The value of ρv

ρg
that is used for pre-launch calibration of GEDI is 1.5 at

1064 nm [55]. With the relevant information regarding canopy and ground energy sepa-
ration as well as ρv

ρg
, the cumulative gap probability and canopy cover are then calculated

using Equation (1).

Fapp(z) =
d logP(z)

dz
(3)

where Fapp(z) is the apparent foliage profile.
The cumulative PAI profile can then be calculated through the actual foliage profile

(or foliage area volume density), which is a projection adjustment of Fapp(z).

PAIcum(z) = C ∗
∫ z

z0

Fa(z)dz = C ∗
∫ z

z0

Fapp(z)
G

dz (4)

Finally, the term Fa(z) is the foliage area volume density (PAVD) with units of m2/m3

and G is the projection coefficient used to adjust the apparent foliage profile Fapp(z) to Fa(z).
Assuming a random foliage distribution within the canopy, the projection coefficient

G is set to be 0.5 [57]. Clumping index C is another important parameter which adjusts the
linear relationship between effective PAI and true PAI (a typical value of mean clumping
index is 1.58 for broadleaf and evergreen forest). For GEDI, the clumping index value used
is 1, which will be replaced with more representative biome-specific values once the foliage
clumping databases under development are available [55,59].

GEDI uses the gap probability to derive PAI estimates at various height bins in the
canopy. Both vertical PAI and total PAI were derived from GEDI waveforms with the GORT
model [57]. Tang et al. [60] demonstrated that vertical PAI distributions may be derived
from LiDAR waveforms, in addition to total PAI; entirely based on a physical derivation of
PAI, not statistically based regression methods, as is commonly done in other methods of
deriving PAI from LiDAR height and penetration metrics [61]. The detailed calculations
are given in Equations (1)–(4) above.

This approach thus provides a pathway for estimating PAI profiles without the need
for field-measured PAI values to develop model relationships, although ancillary data (or
assumptions) are required to parameterize the model (e.g., the ratio of vegetation to ground
reflectance), which for the GEDI are extracted from an external database values for different
biomes, which will be updated periodically [55].

3.2. ALS Data Processing

The ALS data were processed to derive the metrics of interest (elevation, canopy
height, PAI, and PAVD profile) for comparison.



Remote Sens. 2022, 14, 3615 9 of 26

3.2.1. Elevation and Slope

The elevation was determined by extracting the mean values from a DEM of ground
hits with a resolution of 60 cm, generated from the same ALS dataset used in the study. The
slope was then calculated from the DEM using the terrain function from the “raster” pack-
age in R. The mean slope values of the sites were then extracted for each of the footprints.

3.2.2. Canopy Height

While RH metrics other than RH95 have been used in other studies for representing the
canopy height, higher percentile metrics (e.g., RH99 or RH100) are often affected by noise,
whereas lower percentile metrics (e.g., RH50) tend to be affected by distorted waveforms
or lower density point clouds in the presence of complex terrains such as that found in
the study area. For deriving the RH95 metric, the discrete-return point cloud data are first
clipped to the coincident GEDI footprint using the LidR package in R [62,63]. A pseudo-
waveform is simulated from the clipped point-cloud using the approach given in [64],
using the rGEDI package in R [65]. RH95 is then extracted from the pseudo-waveform, as is
also done in [66].

3.2.3. PAI and PAVD Profile

For PAI and PAVD derivation, due to the inability of the vertical view to resolve foliage
angle distribution, clumping, and non-foliage elements, the “effective” PAI is derived not
the “actual” PAI; and the PAVD profiles derived are not the same as the “true” foliage
density profiles and the derived profiles should be referred to as “apparent” foliage profiles
(AFP). The difference between the true and apparent profiles depends on the canopy
structure and type as discussed by Ni-Meister et al. [57], since this affects the nature of its
projection in the vertical direction.

Derivation of the AFP from LiDAR observations has been described in [67,68]. To
summarize briefly, the probability of a gap from the top of the canopy to a given height, z,
can be estimated by summing the total number of returns down to z and comparing them
to the total number of independent LiDAR pulses (N):

Pgap(z) = 1−
{

#zj
∣∣zj > z

}
N

(5)

where #z is the number of returns down to a height z above the ground [26].
A more robust estimate of return intensity can be derived by weighting individual

returns by the Number of Returns (NoR) metadata value recorded for each outgoing pulse,
that is 1/NoR. Although this is an oversimplification, for example ignoring the differing sur-
face reflective properties, partial backscatter, or transmission losses [57], Armston et al. [58]
reported a good agreement when comparing Pgap derived with this method and full-
waveform data captured over the same plot.

Therefore, Pgap from airborne LiDAR data for a circular plot area coinciding with the
GEDI footprint are estimated in this study using:

Pgap(z) = 1− Σ wi (zi > z)
W

(6)

where W is the per plot sum of 1/NoR (including ground returns) and wi is 1/NoR for
returns i above height z.

The cumulative projected foliage area index from the top of the canopy down to a
height z is then given by,

L(z) = − log
(

Pgap(z)
)

(7)

where the first derivative of L(z) is the apparent foliage density profile or PAVD [26,67].
Using the above Pgap(z) and L(z) information, the vertical height profile of the AFP

or PAVD, as well as total cumulative PAI are obtained from the ALS point-cloud data for
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each GEDI footprint. The ALS data processing is done using Python and the ForestLAS
package [69].

3.3. Comparative Statistical Analysis

The statistical comparison of the GEDI vs. ALS was carried out by computing selected
accuracy assessment metrics, across a gradient of elevations, canopy heights, slopes and
within the two forest age-classes. The statistics were calculated in the R software environ-
ment using the “Metrics” package, except for the squared Pearson correlation coefficient
(R2) and root mean squared percentage error (RMSPE), which were calculated using the
base R functionality [63]. The R2, bias, percentage bias (%bias), root mean squared error
(RMSE), and RMSPE were used to determine the performance for the entire study area
for canopy height and PAI. Additionally, the mean, median, median absolute deviation
(MAD), mean absolute error (MAE), and the mean absolute percentage error (MAPE) were
calculated for the comparison between the power beams, canopy height, slope, and PAVD
analysis. This allowed the absolute and relative difference in the GEDI vs. ALS values of
the metrics of interest to be determined. The equations used in the comparative analysis
are summarized below (Equations (8)–(11)).

MAE =
1
n
·

n

∑
i=1
|Xi −Yi| (8)

MAPE (%) =
1
n
·

n

∑
i=1

|Xi −Yi|
Xi

·100 (9)

RMSPE (%) =

√√√√ 1
n
·

n

∑
i=1

(
Xi −Yi

Yi

)2
·100 (10)

%bias (%) =
∑n

i=1(Xi −Yi)

∑n
i=1 Yi

·100 (11)

where, X is equal to the observed value (ALS) and Y the predicted value (GEDI); n is the
number of footprints used.

3.3.1. Landscape-Level Digital Elevation Model (DEM) Analysis

The relationship between the ground elevations produced by the two LiDAR platforms
was assessed to determine the effect this error might have on the forest structural metric
results. The elevation values were compared for all the footprints in the study area. The
relationship between the ALS and GEDI across the range of elevations was investigated.
The deviation around the difference between the ALS and GEDI was also investigated
as even if the methods produce comparable trends, the spread in the data could result in
larger uncertainty in subsequent canopy height results. The purpose of this analysis was to
assess how the different ground elevation values produced by ALS and GEDI may affect
the forest structural metrics, as differences in the elevation would subsequently affect the
canopy height and PAVD estimates.

The effect of terrain slope on the accuracy was evaluated by grouping the GEDI
footprints into classes at 5-degree intervals, starting from 0 degrees to 40 degrees; and
two 10-degree intervals from 40 to 60 degrees, these larger degrees having a lower num-
ber of footprints. The slope values used for the analysis were extracted from the ALS
derived DEM.

3.3.2. Landscape-Level Canopy Height and Plant Area Index (PAI) Analysis

The analysis of canopy height and PAI at the landscape-level was conducted using
all 11,832 footprints from two entire GEDI tracks that transect a representative area in the
middle of the Central Highlands of Victoria (Figure 1c), which also covers areas burnt in
wildfires of 1939 and 2009. This enabled an overall comparison of the accuracy of the two
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LiDAR methods (ALS and GEDI) across the study area. As this area covers a large range
of heights and varying terrain complexities, it allows for the assessment of the variance
between the two methods across a diverse range of environmental conditions. The effect of
the beam type (power or coverage beam) was also investigated to determine if utilizing the
different beam types would make a difference on the results.

The differences between the two sensors (ALS, GEDI) at different canopy height and
slope ranges was then investigated to examine the variance in error of the two methods
when measuring different forest heights or under varying complexities of terrain. To do
this the footprints were grouped into different height and slope classes. The canopy height
classes were grouped using their ALS canopy height values, with 7 groups from: 0–10 m,
10–20 m, 20–30 m, 30–40 m, 40–50 m, 50–60 m, and >60 m. The effect of terrain slope was
investigated with the same intervals as described in the DEM analysis (Section 3.3.1), with
group classes from 0 degrees to 60 degrees. In addition to this, the beam type (power or
coverage beam) was isolated to investigate the effect that the use of different beams has on
the accuracy.

3.3.3. Case Study Analysis of PAVD and PAI

The analysis of PAVD plots across the landscape has limitations as the PAVD curves at
different height are likely to vary significantly due to the study area covering a diverse range
of forest types with varying disturbance histories. A theoretical example to demonstrate
this would be a dry eucalyptus forest and a wet rainforest plot. Both can have the same
height but would be expected to have significantly different vertical structural profile.
The varying disturbance histories (e.g., wildfire) across the study area produces similar
problems, as a young regrowth forest in a wet climate could end up being assessed in the
same height class as a mature dry forest. To combat this variance in profiles, both age class
and forest type must be kept constant.

Therefore, to determine how PAVD profile estimates differ between the two LiDAR
sources, while accounting for these varying forest and disturbance histories, two age-classes
of predominantly mountain ash forest were qualitatively analyzed. The fire sensitivity
of ash species results in widespread mortality when exposed to medium-hot fire. Conse-
quently, a mature (1939 origin) and a regrowth (2009 origin) stand will have vastly different
structural characteristics [70,71], most notably height and density. Mature ash are typically
60–80 m tall, while a 10 year old stand would be around 20 m. Stand densities are also
significantly different, because the forest stand undergoes self-thinning as it matures and
the densely spaced individual trees complete for light [72]. Additionally, these forests were
selected given their hydrological [73–75], carbon [76], and biodiversity [77] importance to
the region.

Footprints from the two tracks of GEDI footprints were selected (Figure 1b,c), one for
each age-class of forest resulting from being burnt during the wildfires of 1939 (transect of
1939 fire) and 2009 (transect of 2009 fire). For each age-class (1939 and 2009), the following
analysis was carried out. The PAVD profiles were qualitatively assessed at the same height
bins using a set of two figures showing: (a) PAVD profile curves for each sensor (ALS and
GEDI), (b) boxplots showing the differences between the two sensors at height interval bins
of 5 m, and (c) a 1:1 scatter plot of GEDI and ALS PAI values.

4. Results
4.1. DEM Analysis

The scatterplot of GEDI and ALS-derived elevation values shows a strong linear
relationship (R2 = 1.00), with more variability in the medium elevation range (Figure 3).
The MAE is 7.49 m and the RMSE is 10.58 m with a bias of 1.28 m. The percentage errors
were small (<5%) for the %bias, RMSPE, and MAPE (Figure 3). The histogram of the
distribution of elevation residuals (ALS, GEDI) shows a median error of 0.79 m, mean error
of 1.28 m, and a MAD of 7.71 m. Overall, there is a strong agreement between GEDI and
ALS elevation, with GEDI over-estimating the reference elevation by a mean of 1.28 m.
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Figure 3. Comparison of ALS derived ground elevation compared to GEDI, for all individual
footprints (11,832). (left) Scatter plot of ALS and GEDI elevation values (meters). The 1:1 line is
shown (dashed), along with the linear regression (solid red line). (right) Histogram showing the
distribution of the difference between the elevation values (ALS, GEDI).

Upon examining the variation of elevation errors with slope (Figure 4), it can be seen
that the median error increases with the slope once a threshold of around 20 degrees is
crossed. Below this threshold, the median of the elevation error is low and remains close
to zero for the first four slope bins between 0 and 20 degrees, i.e., 0–5, 5–10, 10–15, and
15–20 m.

Figure 4. Boxplot of differences in elevation between ALS and GEDI i.e., (ALS95, GEDI95) for
individual footprints (11,832) in different slope bins.

4.2. Canopy Height
4.2.1. Accuracy of Canopy Height of Individual Footprints

The scatter plot of the canopy height metric between ALS (ALS95) and GEDI (GEDI95)
showed consistent error across the footprints sampled (Figure 5), with the highest density
of footprints lying close to the 1:1 line. The R2 value is 0.58 which means that 58% of the
variation in the GEDI canopy height values can be explained by the ALS values of canopy
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height. The trend across the canopy height range showed a bias of 0.18 m (%bias −10.01%).
The RMSE was 10.97 m (RMSPE 70.02%) and a MAE of 7.05 (MAPE 30.08%).

Figure 5. Scatter plot of ALS and GEDI canopy height values (RH95 or 95th percentile of cumulative
return energy) for all individual footprints (11,832). The 1:1 line is shown (dashed); the color of the
pixel (legend) represents the number of footprints having a common value of canopy height.

The overall accuracy of the GEDI canopy height estimates for all the 11,832 footprints
is given in Table 3 below, for both beam type combined (power beams or coverage), and
separately. When both beam types are considered together, the GEDI canopy height
overestimates the reference ALS canopy height with a median value of 1.88 m and a MAD
value of 5.35 m. For both beam types, the mean value by which GEDI underestimates ALS
is 0.18 m (%bias = −10.01%), and the RMSE is 10.97 m (RMSPE = 70.02%). MAD and MAE
for both types of beams are similar (MAD of 5.19 m and 5.58 m and MAE 6.69 and 7.58 for
the power and coverage beams, respectively), producing a MAPE difference of 1.29%. The
RMSE showed a larger difference (1.63 m), with a RMSPE difference of 18.97%. Despite the
larger RMSPE value, the power beam produced a better R2 value of 0.63, with the coverage
beam having a greater number of GEDI results under-estimating significantly compared to
the power beam.

Table 3. Overall accuracy of GEDI canopy height estimates for all individual footprints (11,832).
Statistics for differences in canopy height values (ALS95, GEDI95). MAD is median absolute deviation,
MAE is mean absolute error, MAPE is mean absolute percentage error, RMSE is root mean square
error, RMSPE is RMS percentage error, and R2 is the co-efficient of determination.

Beam Type Median MAD Mean MAE MAPE (%) RMSE RMSPE (%) Bias %Bias (%) R2

Power −2.03 5.19 −0.75 6.69 29.79 10.29 76.97 −0.75 −12.51 0.63
Coverage −1.67 5.58 1.57 7.58 30.50 11.92 58.00 1.57 −6.24 0.51

Both −1.88 5.35 0.18 7.05 30.08 10.97 70.02 0.18 −10.01 0.58

4.2.2. Variation of GEDI Canopy Height Accuracy with Height of the Canopy

The varying difference between ALS and GEDI canopy height (RH95) values for
individual footprints across different height classes can be found in Figure 6a. There are
some outliers, but the figure shows that the GEDI median value overestimates ALS values
for all but the tallest height bin (canopy height > 60 m). The median difference in canopy
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height between ALS and GEDI peaks at 5.79 m for the 0–10 m height bin and decreases to
3.83 m for the 10–20 m height bin. From the 20–30 m bin upwards, the difference is less than
2 m and decreases with increasing height of the forest canopy. The highest median accuracy
is found in the tallest forest canopy height (60–100 m) bin, in which the median of the ALS
height is 0.03 m higher than the GEDI height value. The different beam types produced
comparable results, with significant overlap in the differences at every height class.

Figure 6. Boxplot of differences in canopy heights between ALS and GEDI, i.e., (ALS95, GEDI95) for in-
dividual footprints (11,832) in different canopy height bins (a) and in different slope bins (b). Canopy
height differences are shown for footprints from the two types of beams (power and coverage).

The MAD across the height range did not show any significant trend, with values
ranging from 4.05 m to 5.68 m (Table 4). The error variance across the height range was
also relatively consistent (MAE ranging from 7.73 m to 6.87 m and RMSE from 10.43 m
to 14.16 m). However, this relative consistency in absolute error resulted in an overall
decrease in the percentage error with increasing canopy height, with MAPE decreasing
from 151.31% to 10.73% and RMSPE decreasing from 256.58 to 22.72, showing that relatively
speaking, the GEDI was more accurate when measuring taller forests.

Table 4. Accuracy statistics of GEDI canopy height differences (ALS95, GEDI95) of individual foot-
prints (11,832) within different canopy height bins. Footprints were grouped using the ALS canopy
height (RH95) values.

Height Bin (m) Median MAD Mean MAE MAPE (%) RMSE RMSPE (%)

0–10 −5.79 4.87 -7.31 7.73 151.31 10.43 256.58

10–20 −3.83 5.68 -3.74 6.40 45.31 7.74 61.45

20–30 −1.98 5.63 -0.83 6.11 24.31 8.28 33.12

30–40 −1.40 5.47 1.41 7.34 21.02 10.54 30.23

40–50 −1.46 5.17 2.41 8.02 18.02 12.64 28.88

50–60 −1.16 4.05 2.06 6.87 12.67 12.66 23.59

>60 0.03 4.17 3.77 6.90 10.73 14.16 22.72
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4.2.3. Variation of Canopy Height Accuracy with Slope of Terrain

From Figure 6b, the median GEDI estimate of canopy height exceeds the ALS estimate
for all slope classes, and there is an increasing trend in the error in canopy height with in-
creasing slope (increasing median from−1.13 m at 0–5 degrees to−4.22 m at 40–50 degrees,
with a similar trend in the mean). The maximum error between ALS and GEDI median
estimates of canopy height is 11.11 m for the 50–60 m slope class, but with this class only
containing 4 footprints, it may be regarded as an outlier. The MAE was also shown to
increase with slope, increasing from 5.62 m to 10.70 m. However, this did not result in a
percentage increase with the MAPE (Table 5), indicating that there is a larger abundance
of taller forests at greater slopes in the study area. While the overall trend showed an
increasing difference with slope, when split into different beam type, the power beam has a
greater increase in the error compared to the coverage beam (Figure 6b, indicating that the
power beam was more adversely affected at greater slopes than the coverage beam.

Table 5. Accuracy of GEDI canopy height estimates of individual footprints (11,832) for different
slope bins (ALS95, GEDI95 values).

Slope Bin
(Degree) Median MAD Mean MAE MAPE (%) RMSE RMSPE (%)

0–5 −1.13 3.96 0.75 5.62 25.07 9.66 67.56

5–10 −1.38 4.11 0.41 5.91 27.13 9.93 63.42

10–15 −1.53 4.94 0.97 6.88 29.88 11.13 72.81

15–20 −1.85 5.69 1.08 7.75 32.13 12.04 70.02

20–25 −2.56 5.86 −0.46 7.45 31.81 11.18 70.60

25–30 −2.89 6.23 −0.52 7.81 31.54 11.16 58.26

30–35 −3.84 6.55 −2.42 7.67 33.70 10.39 101.23

35–40 −4.09 6.48 −2.41 8.23 30.41 11.26 51.24

40–50 −4.22 7.67 −1.75 9.36 28.76 13.31 39.51

50–60 −11.11 3.48 −8.04 10.70 27.29 11.27 29.20

4.3. Plant Area Index
4.3.1. Accuracy of Total PAI of Individual Footprints

The scatter plot of the total PAI metrics between ALS and GEDI shows poor agreement
for all the samples in the whole study area (Figure 7), with an R2 value of the linear model of
only 0.16, meaning that the ALS PAI values can only explain 16% of the observed variation
in GEDI PAI values, along with the trendline of the values sitting significantly above the
1:1 line, with a y-axis intercept of 0.826. The GEDIPAI values are consistently higher than
the ALSPAI values, indicating that GEDI generally overestimating the total PAI. The error
values produced were also high, with an RMSE of 1.21 m2/m2 (RMSPE = 383.60%) and
MAE of 0.88 m2/m2 (MAPE = 144.08%). The different beam types did not improve the
overall accuracy (Table 6), with the coverage beam producing a slightly higher correlation
(0.20 compared to 0.15), but also had significantly larger errors (increase in RMSPE of
106.92% and MAPE of 32.33%).
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Figure 7. Scatter of total PAI for all sample ALS and GEDI footprints in the study area. The 1:1 line is
shown in red; the color of the pixel (legend) represents the number of footprints having a common
value of plant area index (PAI).

Table 6. Overall accuracy of GEDI PAI estimates for all individual footprints (11,832). Statistics for
differences in values (ALSPAI, GEDIPAI).

Beam Type Median MAD Mean MAE MAPE (%) RMSE RMSPE (%) Bias %Bias (%) R2

Power −0.44 0.70 −0.73 0.85 131.16 1.23 337.27 −0.73 −115.52 0.15
Coverage −0.73 0.83 −0.85 0.92 163.49 1.17 444.19 −0.85 −154.09 0.20

Both −0.55 0.78 −0.78 0.88 144.08 1.21 383.60 −0.78 −130.94 0.17

4.3.2. Variation of GEDI PAI Accuracy with Height of the Canopy

For the individual footprints which were grouped into 7 height bins based on their
canopy heights derived from airborne LiDAR (ALS95), Figure 8a shows the differences
between ALS and GEDI PAI values for all the individual footprints (11,832). As expected
from the earlier density plot (Figure 7), GEDI overestimates the ALS values of PAI for all
height bins. While the overall performance of the ALS PAI in comparison to the GEDI
PAI was poor, the errors did decrease significantly with increasing height (Table 7). With
MAPE and RMSPE values decreasing from 659.82% and 1141.78% (0–10 m tall forests),
to 67.88% and 96.38% (forests more than 60 m tall). Like the overall comparison of the
beam type across the entire dataset, the change in canopy height also did not consistently
improve the accuracy of the GEDI values in comparison to the ALS (Figure 8a).
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Figure 8. (a) Boxplot of overall differences between ALSPAI and GEDIPAI, i.e., (ALS, GEDI) values of
PAI for footprints in 7 height bins (a) and for footprints in different slope bins (b). PAI differences are
shown for footprints from the two types of beams (power and coverage).

Table 7. Accuracy of GEDI PAI estimates of individual footprints (11,832) for different height bins.
Statistics for differences in values (ALSPAI, GEDIPAI). MAD is median absolute deviation and SD is
standard deviation.

Height Bin (m) Median MAD Mean MAE MAPE RMSE RMSPE

0–10 −0.56 0.82 −0.94 1.00 659.82 1.42 1441.78

10–20 −0.44 0.75 −0.76 0.85 163.35 1.24 310.41

20–30 −0.51 0.73 −0.76 0.85 131.61 1.19 275.95

30–40 −0.66 0.82 −0.88 0.95 126.73 1.27 230.07

40–50 −0.59 0.79 −0.77 0.88 98.76 1.18 154.92

50–60 −0.49 0.71 −0.69 0.81 83.98 1.11 125.41

>60 −0.39 0.69 −0.55 0.71 67.88 0.98 96.38

4.3.3. Variation of PAI Accuracy with Slope of Terrain

From Figure 8b, the median GEDI estimate of total PAI exceeds the ALS estimate for all
slope classes, with an increasing trend in the difference in PAI values with increasing slope.
The maximum absolute difference between ALS and GEDI median estimates of total PAI is
2.14 for the 50–60 m slope class; however, this slope class contains only 4 footprints and may
be regarded as an outlier. As the slope increased, the over-estimation of PAI produced by
GEDI increased (Table 8). The median difference of−0.32 m2/m2 at 0 to 5 degrees increased
to −1.36 m2/m2 at 40 to 50 degrees. The MAE increased from 0.53 m2/m2 to 1.72 m2/m2

across the same range. The MAPE also showed an increase from 84.41% to 211.05%.
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Table 8. Accuracy of GEDI total PAI estimates of individual footprints (11,832) for different slope
bins. Statistics for differences in values (ALSPAI, GEDIPAI).

Slope Bin
(Degree) Median MAD Mean MAE MAPE RMSE RMSPE

0–5 −0.32 0.47 −0.42 0.53 84.41 0.76 216.85

5–10 −0.35 0.53 −0.49 0.59 92.58 0.84 247.88

10–15 −0.41 0.63 −0.61 0.72 117.38 1.01 323.07

15–20 −0.55 0.80 −0.77 0.88 150.17 1.22 382.80

20–25 −0.80 0.99 −0.96 1.04 170.24 1.35 483.25

25–30 −1.02 1.09 −1.13 1.21 202.79 1.52 456.01

30–35 −1.22 1.15 −1.31 1.36 236.16 1.67 618.52

35–40 −1.46 1.17 −1.43 1.50 220.22 1.78 316.29

40–50 −1.36 1.12 −1.42 1.47 211.05 1.76 304.31

50–60 −2.14 0.13 −1.72 1.72 194.17 1.90 217.77

4.4. Analysis of Two Forest Age Classes

The vertical PAVD profile (Figure 9a,b) and scatter plot (Figure 9c) of the total PAI
values from GEDI and ALS within the 1939 fire age-class show that GEDI is able to replicate
within reasonable ranges the ALS PAVD profile from about 30 m upwards (MAPE decreases
from 1171.97% to 103.61%), until the top of the canopy. The highest difference between
GEDI and ALS PAVD values occurs at the lower end of the canopy (at 10 m with a median of
−0.026). There is also a significant decrease in the RMSPE in this range, from 17,616.88% to
416.49%. The MAD decreased from 0.077 to 0.012 from 5 m to 20 m, remaining around this
range for the rest of the vertical profile (0.008 to 0.012). The R2 value of the linear model
for total PAI between GEDI and ALS also increased from 0.16 for the entire study area
(Figure 7) to 0.27 (Figure 9c).

Figure 9. Mean vertical PAVD profile of ALS and GEDI, for footprints from 1939 fire age-class (a) and
2009 fire age-class (d); difference between GEDI and ALS values in 5 m canopy height bins for
1939 age-class (b) and 2009 age-class (e); scatter plot of ALS and GEDI PAI values for footprints
within the 1939 fire age-class (c) and the 2009 fire age-class (f).

Similarly, the vertical PAVD profile (Figure 9d,e) and scatter plot (Figure 9f) of the
total PAI values from GEDI and ALS for the 2009 fire age-class showed that GEDI is able to
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replicate the ALS PAVD profile from about 30 m upwards (MAPE decreases from 622.60% to
111.23%), until the top of the canopy. The highest difference between GEDI and ALS PAVD
values also occurs at the lower end of the canopy (Table 9). Similar to the 1939, the 2009 fire
age-class also saw a significant reduction in RMSPE in this range, from 2749.55% to 177.57%.
The R2 value of the linear model for total PAI between GEDI and ALS also increased from
0.16 for the entire study area (Figure 7) to 0.60 (Figure 9f).

Table 9. Accuracy of GEDI PAVD of individual footprints for the two fire age-classes at different
height intervals. Statistics for differences in values (ALSPAVD, GEDIPAVD).

Fire Age-Class 1939 2009

Height Bin (m) Median MAD MAE MAPE RMSE RMSPE Median MAD MAE MAPE RMSE RMSPE

5 0.012 0.077 0.068 88.30 0.088 144.04 −0.007 0.097 0.089 747.57 0.121 4617.36

10 −0.026 0.035 0.046 11,246.96 0.067 133,410.21 −0.038 0.071 0.075 505.67 0.104 1676.06

15 −0.008 0.016 0.020 7043.90 0.029 93,788.13 −0.042 0.039 0.052 1254.64 0.066 3678.82

20 −0.004 0.010 0.012 5779.06 0.019 87,236.17 −0.011 0.019 0.028 1250.35 0.042 3897.17

25 −0.001 0.008 0.010 1171.97 0.02 17,616.88 0.000 0.007 0.015 622.60 0.03 2749.55

30 −0.001 0.009 0.010 103.61 0.017 416.49 0.003 0.003 0.012 111.23 0.027 177.57

40 −0.002 0.012 0.012 67.83 0.016 131.91 0.004 0.002 0.009 94.94 0.022 96.66

50 0.003 0.015 0.013 42.99 0.017 74.02 0.003 0.001 0.005 94.85 0.009 0.96

60 0.002 0.015 0.014 65.82 0.019 97.43 - - - - - -

70 0.001 0.010 0.008 61.66 0.011 70.87 - - - - - -

5. Discussion

The results of the accuracy assessment of the three forest structure LiDAR metrics
of interest from the previous sections are examined in this section in light of the exist-
ing literature on similar studies. Relevant studies done thus far on GEDI have focused
on assessing the ground elevation and canopy height accuracy in European temperate
forests [38]; accuracy of a global 30 m canopy height model extrapolated from GEDI using
Landsat optical data [41]; accuracy of extrapolated 1-km resolution contiguous maps of tree
height (TH), canopy fraction cover (CFC), PAI, and foliage height diversity (FHD) for the
conterminous US (CONUS) using VIIRS satellite data [34], and a study on GEDI simulator
performance in eucalypt forests [42].

Of these studies, ref. [38,42] considered the accuracy assessment at GEDI footprint
level for canopy height, similar to the methodology in this study. The analysis done in this
study assessing total PAI and the vertical foliage profile (VFP; using PAVD) has not been
undertaken in the literature to our knowledge. However, there are a couple of studies on
PAI and VFP which used full-waveform large footprint LiDAR systems such as the airborne
laser vegetation imaging sensor (LVIS) and the space-borne ICESat/GLAS sensor which
has similar characteristics to the GEDI [60,78,79]. Therefore, a few pertinent observations
will be made on the prominent findings with regard to these studies which used LVIS and
GLAS LiDAR data.

5.1. Ground Elevation Effect on Height and Density Attributes

The analysis of the ground elevation showed that the GEDI on average has only a
relatively small over-estimation in elevation in comparison to the ALS dataset used (1.28 m).
While this is similar in trend to previous studies assessing GEDI elevation, these studies
produced smaller over-estimations (Wang et al. [78] = 0.29 m; Quiros et al. [79] = 0.41 m).
The high RMSE (10.58 m) was larger than some previous (Quiros et al. [79] = 6.05 m,
although they did have values greater than 7.5 in forested and broadleaf areas) studies.
However, a recent study by Huettermann et al. [42] had comparably large RMSE values
(RMSE > 16 m for raw GEDI), in a similar region (south-eastern Australia). In this concur-
rent study [42], it was shown that this deviation could be reduced using simulated GEDI
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(RMSE < 2.35 m). The use of simulated GEDI increased the accuracy of ground elevation
measurements and subsequently that of canopy height. The large deviation observed in our
ground elevation results is likely to contribute to the large MAD observed in the canopy
height (RH95) results. However, despite the large MAD, the low %bias (0.08%), RMSPE
(1.76%) and high correlation (1.00) suggest that the overall difference in elevation would
not lead to systematic errors when comparing the canopy and PAVD vertical profiles.

While overall the elevation comparison did not show any significant bias (%bias < 5%)
across the elevation range, the slope did have an effect. As the slope increased, the under-
estimation (in comparison to the ALS elevation values) increased (Figure 4). This effect of
slope is consistent with the literature [42]. This error has been found to be worse in dense
forests [78]. As our study area contains high density, complex forests, the over-estimation of
elevation in our results and increasing deviation with slope is not surprising. Despite this
result, the GEDI was still found to over-estimate canopy height (Figure 6b) with increasing
slope. This means that the over-estimation in the elevation helped improve the correlation
between the GEDI and ALS canopy height results. However, with this effect of slope only
increasing significantly after ~30 degrees, the slope effect on the canopy height, PAI, and
PAVD is likely to only affect a small subset of the footprints in the study area, with the trend
in the deviation not reducing the accuracy of the analysis for these forest structural metrics.

5.2. Can GEDI Estimate ALS-Based Canopy Height?

Adam et al. [38] assessed the accuracy of GEDI estimates of canopy height at the
individual footprint level, although they acknowledged the considerably poor geolocation
accuracy of the GEDI Version 1 data that they used (1σ of 10–20 m). For this study, the
Version 2 GEDI data with better geolocation accuracy (1σ of 10 m) were used.

Another difference is that [38] took the maximum value of the GEDI footprint of the
canopy height model (CHM) generated from the ALS data, for comparing with the GEDI
RH100 relative height metric, whereas in this study, the selected canopy height metric
(RH95) of the ALS data (ALS95) was derived from the pseudo-waveform generated from the
ALS point-cloud data, which was then compared with the RH95 metric from the GEDI data
(GEDI95). This approach of emulating full waveform data from discrete return point-cloud
airborne LiDAR data was found to provide a robust comparison of stand canopy metrics to
reference data by Coops et al. [26] and also used by Roy et al. [66] in their assessment of the
impacts of GEDI’s geolocation uncertainty.

The overall median of the differences in canopy height (ALS95, GEDI95) (Table 3) is
−1.88 m with a median absolute difference (MAD) of 5.35 m, which is more than that
found by [38] for the Thuringian temperate forest region in Germany, viz. a median of
−0.23 m, with a MAD of 3.17 m. The higher canopy height difference could be due to the
time difference between the acquisition of the two datasets (ALS in 2015-16 and GEDI in
2018) of about 3 years.

The mean growth rate of eucalyptus spp. in this is region is around 0.7 m/year [80],
which could explain much of the difference in canopy heights between the two sensors
(total growth in canopy height of approximately 2.1 m, for the approximately 3 years
difference in time of acquisition between the ALS and GEDI data). This would give an
actual median canopy height difference of 1.88 m −2.1 m = −0.22 m, which is very close
to the median value of the differences between ALS and GEDI (viz. −0.23 m) found by
Adam et al. [38].

Our results for the actual GEDI data are similar to those of Huettermann et al. [42].
However, the GEDI proved better at identifying canopy heights in tall forests in our study.
The range of forest types used by Huetterman et al. [42] provided a more structurally
diverse dataset than this paper focusing predominantly on canopy height, and notably,
they found better correspondence between ALS and GEDI in shorter forests.

Kutchartt et al. [81]and Liu et al. [39] report that power beams provide more accuracy
for canopy height retrieval. However, there is an absolute difference of 0.39 m in the
corresponding median values of canopy height errors for the power and coverage beams,
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with the power beam exhibiting a higher median error of −2.03 (Table 3). This is surprising
given that in dense forests, the coverage beams are expected to perform worse, having
less laser energy to penetrate to the ground, which is why generally the power beams are
recommended to be used [55].

Finally, the 3–4-year time difference between the ALS and GEDI missions introduces a
potential source of error. For canopy height, this relates to stand growth dynamics. Our
finding that GEDI significantly overestimated height for trees <20 m may be in part a
function of growth rates. Annual increases in height for E. regnans forest range from 1.6 m
year−1 (~20-year-old stand) to less than 0.4 m year−1 for mature (80+ year-old) trees [82].
This may account for GEDI overestimation of RH95 in Figure 5 for trees <20 m, because
growth rates are higher in younger stands.

5.3. Can GEDI Estimate Total PAI Accurately?

The density plot (Figure 7) of the total PAI values from all the individual footprints
(11,832) for ALS (ALSPAI) and GEDI (GEDIPAI) shows a low R2 value of 0.16. One possible
source of the error could be the poor geolocation accuracy of individual footprints which
have an uncertainty (1σ) of about ±10 m. This may be highly significant in the study
area, which has a high level of variability in the vegetation structure within very short
distances [27,28].

The error in the PAI also seems to be decreasing as the value of the canopy height
classes or bins increase. This could be related to the difference in the years between data
capture for GEDI and ALS, as we would expect the younger and shorter forests to change
more in this timeframe given that they are likely to be growing at a faster rate. Thus,
much of the observed difference (the over-estimation by GEDI) in the values of ALSPAI
and GEDIPAI may be caused by the growth that has taken place in the forest during the
3 years since the ALS data were captured in 2015–2016; the GEDIPAI may thus be closer to
the reference value than is shown by the observed discrepancy. Conversely, this may be a
function of the complex structure in mountain ash forests.

5.4. Can GEDI Represent the Vertical Canopy Profile Accurately?

For the 1939 age-class, the PAVD vertical profile (Figure 9a) shows a marked im-
provement in the agreement between the ALS and GEDI values of PAVD once the canopy
height of the samples (i.e., the height bins) exceeds approximately 30 m. Below this height
threshold, the GEDI PAVD profile does not seem to be following the variation in the ALS
PAVD profile well.

Therefore, GEDI does not appear to be accurate in the understory layer, i.e., below
a canopy height of about 30 m. This is not consistent with the PAI pattern observed by
Tang et al. [60] in a tropical forest in South America using the LVIS sensor and destructive
sampling towers for reference data. Their finding was that the PAI vertical profile of the
full-waveform LVIS sensor replicated the reference dataset without any specific height
dependence or threshold. These contrasting results are curious. Our hypothesis is that
the complex multi-strata understory in the ash forests posed a problem for the GEDI.
However, the same might be expected for a tropical forest. This would seem to be an area
for further research.

5.5. Operational Use of GEDI in South-East Australian Forests

The choice of which LiDAR platform to use is guided by the spatio-temporal resolution
of data required for the application. Mature forests that have slower growth rates and little
disturbance may not require repeat observations for some studies. ALS can be appropriate
for many applications (e.g., [27,83]). Studies that require individual tree identification can
require higher resolution data capture than either ALS or GEDI (see [12]).

A significant advantage of GEDI is its free availability, meaning that local jurisdictions,
governments, and community organizations that cannot afford ALS data capture now
have a readily accessible source of data on forest structure and resources. Although ALS is
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more accurate after large disturbance events such as wildfire or timber harvesting have
occurred, the ALS dataset becomes quickly outdated and not representative of the forest’s
current state.

Additionally, younger forests grow quickly and dynamically, so having a repeat
measure is invaluable for monitoring forest growth rates. This is not realistic with an
ALS-based approach for various reasons such as cost and logistics. These challenges of ALS
were evident in this project, wherein the ALS data were collected in 2015–2016 and it has not
been flown since. Spectral remote sensing products that are in common use are often based
on using ‘greenness’ as a metric. This is problematic because of the uncertainty surrounding
where the measured recovery is occurring structurally (e.g., understory regrowth, epicormic
growth, or canopy recovery) after disturbance. The use of simulated GEDI, e.g., ([42,84]), is
proposed as a method to both improve canopy height capture, and provides a more robust
geolocation for repeat measures. Whether simulation improves other structural metrics is
not well tested at this time.

The variable results reported here on PAI and PAVD suggest that some applications,
such as fuel accumulation, LAI use in evapotranspiration models, or biomass growth may
be beyond the current GEDI (at least as we have used it). However, it may be useable
in a relative sense, and certainly any application using canopy height and PAVD of the
overstorey and upper strata is confirmed.

5.6. Limitations of the Study

There is an inherent difference in terms of the full waveform vs. discrete return nature
of the GEDI and ALS data acquisition modes, respectively. This has been addressed by
deriving the canopy height metrics after simulating full waveform data from the ALS
point-cloud data, which would help to minimize the discrepancies due to this difference in
data acquisition mode [40,62,64,66].

The errors due to geo-location uncertainty in GEDI have no significant impact on the
findings. The version 2 data product used here is within the mission design requirement of
a geolocation error of 10 m (1σ). Roy et al. [66] and Liu et al. [39] examined the impact of this
level of geolocation uncertainty on the reliability of canopy height estimation from GEDI.

As discussed above, a limitation of our study is the time between ALS (2015–2016)
and GEDI data capture (2019), which may increase discrepancies between the sensors
for all metrics. While growth rates of E. regnans are reasonably well known, there is less
understanding of the dynamics of understory species [82]. We cannot ascribe errors arising
from this source currently.

5.7. Future Research

Future studies could use more customized algorithms to process the raw GEDI L1B
waveforms to get more accurate total PAI and vertical profile metrics. These algorithms
could use more accurate values of the canopy to ground reflectivity ratio ( ρv

ρg
) specific for

the Australian temperate forest biome instead of the default value applied in the standard
GEDI L2B data product [55].

Based upon the findings of this study, estimation of mean annual changes in forest
ecosystem structure at the stand and landscape scale using GEDI data can be carried
out. This could be used in applications such as aboveground biomass stock estimation,
assessing the impacts of climate change and forest disturbances on water supplies and
critical biodiversity habitat.

6. Conclusions

At the landscape scale, for 11,832 footprints, around 58% of the observed variation
in the ALS canopy height values can be explained by the GEDI values of canopy height.
The RMSE is 10.97 m (RMSPE of 70.02%) and the bias is 0.18 m (%bias of −10.02%). The
GEDI overestimates the canopy height with a median value of 1.88 m and median absolute
difference (MAD) of 5.35 m. The coverage beams are found to have comparable accuracy
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to the power beams. The accuracy improves for canopy heights above 20 m and decreases
consistently for increasing terrain slope bins.

For the total PAI values, the ALS and GEDI values show poor agreement, with only
16% of the observed variation in ALS PAI values explained by the GEDI values. The RMSE
is 1.21 m2/m2 and the bias is 0.87 m2/m2. GEDI generally overestimates the total PAI
with a median value of −0.55 m and MAD value of 0.78 m. The accuracy of the power
beams is found to be better than the coverage beams for total PAI. The absolute accuracy is
low and remains stable (median value of ~0.50) for all canopy heights, and only improves
significantly to 0.39 for a tall canopy with heights above 60 m. For increasing terrain slopes,
the absolute accuracy degrades consistently from a median value of 0.32 for the lowest
slope bin to a maximum of 2.13 for the highest slope bin. For the vertical PAVD profile, the
error is found to be significant below a 30 m canopy height threshold. Above this threshold,
the GEDI replicates the reference ALS vertical PAVD profile well.

We conclude that GEDI is appropriate for capturing PAI at the canopy level in tall
forests, with most of the error or over-estimation near the forest floor. Within the limitations
of the study discussed above, it would appear that space-borne LiDAR (GEDI) performs
well in quantifying the canopy height and vertical structure of tall eucalyptus forests of
south-eastern Australia, especially for characterizing the over-story canopy structure.
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