169 research outputs found

    Mitochondrial genomes of two Barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): contrasting rates in mitochondrial gene rearrangement between major lineages of Psocodea

    Get PDF
    The superorder Psocodea has ∼10,000 described species in two orders: Psocoptera (barklice and booklice) and Phthiraptera (parasitic lice). One booklouse, Liposcelis bostrychophila and six species of parasitic lice have been sequenced for complete mitochondrial (mt) genomes; these seven species have the most rearranged mt genomes seen in insects. The mt genome of a barklouse, lepidopsocid sp., has also been sequenced and is much less rearranged than those of the booklouse and the parasitic lice. To further understand mt gene rearrangements in the Psocodea, we sequenced the mt genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus, the first representatives from the suborder Psocomorpha, which is the most species-rich suborder of the Psocodea. We found that these two barklice have the least rearranged mt genomes seen in the Psocodea to date: a protein-coding gene (nad3) and five tRNAs (trnN, trnS1, trnE, trnM and trnC) have translocated. Rearrangements of mt genes in these two barklice can be accounted for by two events of tandem duplication followed by random deletions. Phylogenetic analyses of the mt genome sequences support the view that Psocoptera is paraphyletic whereas Phthiraptera is monophyletic. The booklouse, L. bostrychophila (suborder Troctomorpha) is most closely related to the parasitic lice. The barklice (suborders Trogiomorpha and Psocomorpha) are closely related and form a monophyletic group. We conclude that mt gene rearrangement has been substantially faster in the lineage leading to the booklice and the parasitic lice than in the lineage leading to the barklice. Lifestyle change appears to be associated with the contrasting rates in mt gene rearrangements between the two lineages of the Psocodea

    Mitochondrial genome organization varies among different groups of the booklouse, Liposcelis bostrychophila: Poster

    Get PDF
    The booklouse, Liposcelis bostrychophila is an important stored pest worldwide. The mt genome of an asexual strain (Beibei, China) of the booklouse, L. bostrychophila, comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia and USA. The mt genomes of all of the six asexual strains of L. bostrychophila collected in China, Croatia and USA have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila including the published Beibei strain are more closely related to two other species of booklice, L. paeta and L. sculptilis, than to the sexual strains of L. bostrychophila. Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicated that L. bostrychophila is a cryptic species.The booklouse, Liposcelis bostrychophila is an important stored pest worldwide. The mt genome of an asexual strain (Beibei, China) of the booklouse, L. bostrychophila, comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia and USA. The mt genomes of all of the six asexual strains of L. bostrychophila collected in China, Croatia and USA have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila including the published Beibei strain are more closely related to two other species of booklice, L. paeta and L. sculptilis, than to the sexual strains of L. bostrychophila. Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicated that L. bostrychophila is a cryptic species

    Mitochondrial genome sequence comparisons indicate that the elephant louse Haematomyzus elephantis (Piaget, 1869) contains cryptic species

    Get PDF
    DATA AVAILABILITY STATEMENT : Annotated mitochondrial genome sequences of the African savanna elephant lice produced in the current study are available in GenBank (accession numbers OQ834926-OQ834934; https://www.ncbi.nlm.nih.gov/genbank/); raw Illumina sequence data are available in the NCBI Sequence Read Archive (SRA) database (BioProject accession number PRJNA1021748). Genomic sequence reads of an Asian elephant louse (SRR5308122) and transcriptomic sequence reads of an Asian elephant louse (SRR2051491) are available in the SRA database (https://www.ncbi.nlm.nih.gov/sra).SUPPLEMENTARY MATERIAL S1. PCR primers used to amplify the mitochondrial genes or minichromosomes of the African savanna elephant louse.SUPPLEMENTARY MATERIAL S2. Mitochondrial cox1 gene sequence divergence between closely related congeneric species of parasitic lice.SUPPLEMENTARY MATERIAL S3. The fully sequenced S2-R-nad4L-M-G-nad3 mitochondrial minichromosome of African savanna elephant louse (RS460). trnG, trnM, trnR and trnS2 are tRNA genes for amino acids glycine, methionine, arginine and serine respectively. nad3 and nad4L are for NADH dehydrogenase subunits 3 and 4L. SKnad4LFO2 and SKnad4LRO2 are the primer pair that amplifies the entire S2-R-nad4L-M-G-nad3 minichromosome.SUPPLEMENTARY MATERIAL S4. Mitochondrial gene sequence divergence between African (RS460) and Asian elephant lice (B1567, SRR5308122.SUPPLEMENTARY MATERIAL S5. Mitochondrial gene sequence divergence among Asian elephant lice (B1567, SRR5308122 and SRR2051491).SUPPLEMENTARY MATERIAL S6. Mitochondrial cox1 gene and genome sequence divergence between African savanna elephant (Loxodonta africana, GenBank accession number NC_000934) and Asian elephant (Elephas maximus, NC_005129).The parvorder Rhynchopthirina contains three currently recognised species of lice that parasitize elephants (both African savanna elephant Loxodonta africana and Asian elephant Elephas maximus), desert warthogs (Phacochoerus aethiopicus) and Red River hogs (Potamochoerus porcus), respectively. The Asian elephant lice and the African savanna elephant lice are currently treated as the same species, Haematomyzus elephantis (Piaget, 1869), based on morphology despite the fact that their hosts diverged 8.4 million years ago. In the current study, we sequenced 23 mitochondrial (mt) genes of African savanna elephant lice collected in South Africa and analysed the sequence divergence between African savanna elephant lice and previously sequenced Asian elephant lice. Sequence comparisons revealed >23% divergence for the 23 mt genes as a whole and ~17% divergence for cox1 gene between African savanna and Asian elephant lice, which were far higher than the divergence expected within a species. Furthermore, the mt gene sequence divergences between these lice are 3.76–4.6 times higher than that between their hosts, the African savanna and Asian elephants, which are expected for the co-divergence and co-evolution between lice and their elephant hosts. We conclude that (1) H. elephantis (Piaget, 1869) contains cryptic species and (2) African savanna and Asian elephant lice are different species genetically that may have co-diverged and co-evolved with their hosts.University of the Sunshine Coast.Open access publishing facilitated by University of the Sunshine Coast, as part of the Wiley - University of the Sunshine Coast agreement via the Council of Australian University Librarians.http://wileyonlinelibrary.com/journal/mvehj2024Centre for Veterinary Wildlife StudiesVeterinary Tropical DiseasesSDG-03:Good heatlh and well-bein

    Human pediculosis, a global public health problem

    Get PDF
    Background: Human pediculosis is caused by hematophagous lice, which are transmitted between individuals via direct and/or indirect contact. Despite the public health importance of louse infestation, information concerning the global burden of pediculosis and the epidemiological landscape of louse-borne diseases is limited. The aim of this review was to summarize the biology, epidemiology, diagnosis, and control of lice infestation in humans. We also discussed the latest advances in molecular taxonomy and molecular genetics of lice. Methods: We searched five electronic bibliographic databases (PubMed, ScienceDirect, CNKI, VIP Chinese Journal Database, and Wanfang Data) and followed a standard approach for conducting scoping reviews to identify studies on various aspects of human lice. Relevant information reported in the identified studies were collated, categorized, and summarized. Results: A total of 282 studies were eligible for the final review. Human pediculosis remains a public health issue affecting millions of people worldwide. Emerging evidence suggests that head lice and body lice should be considered conspecific, with different genotypes and ecotypes. Phylogenetic analysis based on mitochondrial (mt) cytb gene sequences identified six distinct clades of lice worldwide. In addition to the direct effect on human health, lice can serve as vectors of disease-causing pathogens. The use of insecticides plays a crucial role in the treatment and prevention of louse infestation. Genome sequencing has advanced our knowledge of the genetic structure and evolutionary biology of human lice. Conclusions: Human pediculosis is a public health problem affecting millions of people worldwide, particularly in developing countries. More progress can be made if emphasis is placed on the use of emerging omics technologies to elucidate the mechanisms that underpin the physiological, ecological, and evolutionary aspects of lice

    The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world : a list of valid species names

    Get PDF
    This work is intended as a consensus list of valid tick names, following recent revisionary studies, wherein we recognize 896 species of ticks in 3 families. The Nuttalliellidae is monotypic, containing the single entity Nuttalliella namaqua. The Argasidae consists of 193 species, but there is widespread disagreement concerning the genera in this family, and fully 133 argasids will have to be further studied before any consensus can be reached on the issue of genus-level classification. The Ixodidae comprises 702 species in 14 genera: Amblyomma (130 species, of which 17 were formerly included in Aponomma, a genus that is still considered valid by some authors), Anomalohimalaya (3), Bothriocroton (7, all previously included in Aponomma), Cosmiomma (1), Cornupalpatum (1), Compluriscutula (1), Dermacentor (34, including the single member of the former genus Anocentor, which is still considered valid by some authors), Haemaphysalis (166), Hyalomma (27), Ixodes (243), Margaropus (3), Nosomma (2), Rhipicentor (2) and Rhipicephalus (82, including 5 species from the former genus Boophilus, which is still considered valid by some authors). We regard six names as invalid: Amblyomma laticaudae Warburton, 1933 is a synonym of Amblyomma nitidum Hirst & Hirst, 1910; Bothriocroton decorosum (Koch, 1867) is a synonym of B. undatum (Fabricius, 1775); Haemaphysalis vietnamensis Hoogstraal & Wilson, 1966 is a synonym of H. colasbelcouri (Santos Dias, 1958); Haemaphysalis xinjiangensis Teng, 1980 is a synonym of H. danieli Černý & Hoogstraal, 1977; Hyalomma erythraeum Tonelli-Rondelli, 1932 is a synonym of H. impeltatum Schulze and Schlottke, 1930 and Rhipicephalus hoogstraali Kolonin, 2009 was not described according to the rules of the International Code of Zoological Nomenclature.Article consists of 12 pages. Bibliography included on last page. Article was migrated from publisher pdf version to MSWord using Abbyy PDF Transformer Version 2.0. Publisher formatting was removed with MSWord 2003 (MSoffice Professional 2003), and document was converted back to pdf using Adobe Distiller Version 6.Includes bibliographical referenceshttp://www.mapress.com/zootaxa/index.htmlab2013 (Author correction

    Seventy-eight entire mitochondrial genomes and nuclear rRNA genes provide insight into the phylogeny of the hard ticks, particularly the Haemaphysalis species, Africaniella transversale and Robertsicus elaphensis

    Get PDF
    DATA AVAILABILITY : Data will be made available on request.Hoogstraal and Kim (1985) proposed from morphology, three groups of Haemaphysalis subgenera: (i) the “structurally advanced”; (ii) the “structurally intermediate”; and (iii) the “structurally primitive” subgenera. Nuclear gene phylogenies, however, did not indicate monophyly of these morphological groups but alas, only two mitochondrial (mt) genomes from the “structurally intermediate” subgenera had been sequenced. The phylogeny of Haemaphysalis has not yet been resolved. We aimed to resolve the phylogeny of the genus Haemaphysalis, with respect to the subgenus Alloceraea. We presented 15 newly sequenced and annotated mt genomes from 15 species of ticks, five species of which have not been sequenced before, and four new 18S rRNA and 28S rRNA nuclear gene sequences. Our datasets were constructed from 10 mt protein-coding genes, cox1, and the 18S and 28S nuclear rRNA genes. We found a 132-bp insertion between tRNA-Glu (E) gene and the nad1 gene in the mt genome of Haemaphysalis (Alloceraea) inermis that resembles insertions in H. (Alloceraea) kitaokai and Rhipicephalus (Boophilus) geigyi. Our mt phylogenies had the three species of Amblyomma (Aponomma) we sequenced embedded in the main clade of Amblyomma: Am. (Aponomma) fimbriatum, Am. (Aponomma) gervaisi and Am. (Aponomma) latum. This is further support for the hypothesis that the evolution of eyes appears to have occurred in the most-recent-common-ancestor of Amblyocephalus (i.e. Amblyomminae plus Rhipicephalinae) and that eyes were subsequently lost in the most-recent-common-ancestor of the subgenus Am. (Aponomma). Either Africaniella transversale or Robertsicus elaphensis, or perhaps Af. transversale plus Ro. elaphensis, appear to be the sister-group to the rest of the metastriate Ixodida. Our cox1 phylogenies did not indicate monophyly of the “structurally primitive”, “structurally intermediate” nor the “structurally advanced” groups of Haemaphysalis subgenera. Indeed, the subgenus Alloceraea may be the only monophyletic subgenus of the genus Haemaphysalis sequenced thus far. All of our mt genome and cox1 phylogenies had the subgenus Alloceraea in a clade that was separate from the rest of the Haemaphysalis ticks. If Alloceraea is indeed the sister to the rest of the Haemaphysalis subgenera this would resonate with the argument of Hoogstraal and Kim (1985), that Alloceraea was a subgenus of “primitive” Haemaphysalis. Alectorobius capensis from Japan had a higher genetic-identity to A. sawaii, which was also from Japan, than to the A. capensis from South Africa. This indicates that A. capensis from Japan may be a cryptic species with respect to the A. capensis from South Africa.JSPS KAKENHI and the Japan Program for Infectious Diseases Research and Infrastructure from the Japan Agency for Medical Research and Development (AMED).https://www.elsevier.com/locate/ttbdisam2024Veterinary Tropical DiseasesNon

    The Multipartite Mitochondrial Genome of Liposcelis bostrychophila: Insights into the Evolution of Mitochondrial Genomes in Bilateral Animals

    Get PDF
    Booklice (order Psocoptera) in the genus Liposcelis are major pests to stored grains worldwide and are closely related to parasitic lice (order Phthiraptera). We sequenced the mitochondrial (mt) genome of Liposcelis bostrychophila and found that the typical single mt chromosome of bilateral animals has fragmented into and been replaced by two medium-sized chromosomes in this booklouse; each of these chromosomes has about half of the genes of the typical mt chromosome of bilateral animals. These mt chromosomes are 8,530 bp (mt chromosome I) and 7,933 bp (mt chromosome II) in size. Intriguingly, mt chromosome I is twice as abundant as chromosome II. It appears that the selection pressure for compact mt genomes in bilateral animals favors small mt chromosomes when small mt chromosomes co-exist with the typical large mt chromosomes. Thus, small mt chromosomes may have selective advantages over large mt chromosomes in bilateral animals. Phylogenetic analyses of mt genome sequences of Psocodea (i.e. Psocoptera plus Phthiraptera) indicate that: 1) the order Psocoptera (booklice and barklice) is paraphyletic; and 2) the order Phthiraptera (the parasitic lice) is monophyletic. Within parasitic lice, however, the suborder Ischnocera is paraphyletic; this differs from the traditional view that each suborder of parasitic lice is monophyletic

    Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent
    corecore