61 research outputs found

    Functional diversity and identity of plant genotypes regulate rhizodeposition and soil microbial activity

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-05-19, accepted 2021-06-30, pub-electronic 2021-08-04Article version: VoRPublication status: PublishedFunder: University of Manchester; Id: http://dx.doi.org/10.13039/501100000770Funder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BBS/E/C/000J0300Funder: Lawes Agricultural TrustSummary: Our understanding of the linkages between plant diversity and soil carbon and nutrient cycling is primarily derived from studies at the species level, while the importance and mechanisms of diversity effects at the genotype level are poorly understood. Here we examine how genotypic diversity and identity, and associated variation in functional traits, within a common grass species, Anthoxanthum odoratum, modified rhizodeposition, soil microbial activity and litter decomposition. Root litter quality was not significantly affected by plant genotypic diversity, but decomposition was enhanced in soils with the legacy of higher genotypic diversity. Plant genotypic diversity and identity modified rhizodeposition and associated microbial activity via two independent pathways. Plant genotypic diversity enhanced soil functioning via positive effects on variation in specific leaf area and total rhizodeposition. Genotype identity affected both rhizodeposit quantity and quality, and these effects were mediated by differences in mean specific leaf area, shoot mass and plant height. Rhizodeposition was more strongly predicted by aboveground than belowground traits, suggesting strong linkages between photosynthesis and root exudation. Our study demonstrates that functional diversity and identity of plant genotypes modulates belowground carbon supply and quality, representing an important but overlooked pathway by which biodiversity affects ecosystem functioning

    Fungal diversity regulates plant-soil feedbacks in temperate grassland

    Get PDF
    Feedbacks between plants and soil microbial communities play an important role in vegetation dynamics, but the underlying mechanisms remain unresolved. Here, we show that the diversity of putative pathogenic, mycorrhizal, and saprotrophic fungi is a primary regulator of plant-soil feedbacks across a broad range of temperate grassland plant species. We show that plant species with resource-acquisitive traits, such as high shoot nitrogen concentrations and thin roots, attract diverse communities of putative fungal pathogens and specialist saprotrophs, and a lower diversity of mycorrhizal fungi, resulting in strong plant growth suppression on soil occupied by the same species. Moreover, soil properties modulate feedbacks with fertile soils, promoting antagonistic relationships between soil fungi and plants. This study advances our capacity to predict plant-soil feedbacks and vegetation dynamics by revealing fundamental links between soil properties, plant resource acquisition strategies, and the diversity of fungal guilds in soil

    Drought soil legacy overrides maternal effects on plant growth

    Get PDF
    Maternal effects (i.e. trans-generational plasticity) and soil legacies generated by drought and plant diversity can affect plant performance and alter nutrient cycling and plant community dynamics. However, the relative importance and combined effects of these factors on plant growth dynamics remain poorly understood. We used soil and seeds from an existing plant diversity and drought manipulation field experiment in temperate grassland to test maternal, soil drought and diversity legacy effects, and their interactions, on offspring plant performance of two grassland species (Alopecurus pratensis and Holcus lanatus) under contrasting glasshouse conditions. Our results showed that drought soil legacy effects eclipsed maternal effects on plant biomass. Drought soil legacy effects were attributed to changes in both abiotic (i.e. nutrient availability) and biotic soil properties (i.e. microbial carbon and enzyme activity), as well as plant root and shoot atom 15N excess. Further, plant tissue nutrient concentrations and soil microbial C:N responses to drought legacies varied between the two plant species and soils from high and low plant diversity treatments. However, these diversity effects did not affect plant root or shoot biomass. These findings demonstrate that while maternal effects resulting from drought occur in grasslands, their impacts on plant performance are likely minor relative to drought legacy effects on soil abiotic and biotic properties. This suggests that soil drought legacy effects could become increasingly important drivers of plant community dynamics and ecosystem functioning as extreme weather events become more frequent and intense with climate change. A plain language summary is available for this article.</p

    Metabarcoding of soil environmental DNA to estimate plant diversity globally

    Get PDF
    IntroductionTraditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods. MethodsWe sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data. ResultsLarge-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region. DiscussioneDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region

    Fungal diversity regulates plant-soil feedbacks in temperate grassland

    Get PDF
    Feedbacks between plants and soil microbial communities play an important role in vegetation dynamics, but the underlying mechanisms remain unresolved. Here, we show that the diversity of putative pathogenic, mycorrhizal, and saprotrophic fungi is a primary regulator of plant-soil feedbacks across a broad range of temperate grassland plant species. We show that plant species with resource-acquisitive traits, such as high shoot nitrogen concentrations and thin roots, attract diverse communities of putative fungal pathogens and specialist saprotrophs, and a lower diversity of mycorrhizal fungi, resulting in strong plant growth suppression on soil occupied by the same species. Moreover, soil properties modulate feedbacks with fertile soils, promoting antagonistic relationships between soil fungi and plants. This study advances our capacity to predict plant-soil feedbacks and vegetation dynamics by revealing fundamental links between soil properties, plant resource acquisition strategies, and the diversity of fungal guilds in soil

    Global diversity and distribution of nitrogen-fixing bacteria in the soil

    Get PDF
    Our knowledge of microbial biogeography has advanced in recent years, yet we lack knowledge of the global diversity of some important functional groups. Here, we used environmental DNA from 327 globally collected soil samples to investigate the biodiversity patterns of nitrogen-fixing bacteria by focusing on the nifH gene but also amplifying the general prokaryotic 16S SSU region. Globally, N-fixing prokaryotic communities are driven mainly by climatic conditions, with most groups being positively correlated with stable hot or seasonally humid climates. Among soil parameters, pH, but also soil N content were most often shown to correlate with the diversity of N-fixer groups. However, specific groups of N-fixing prokaryotes show contrasting responses to the same variables, notably in Cyanobacteria that were negatively correlated with stable hot climates, and showed a U-shaped correlation with soil pH, contrary to other N-fixers. Also, the non-N-fixing prokaryotic community composition was differentially correlated with the diversity and abundance of N-fixer groups, showing the often-neglected impact of biotic interactions among bacteria

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore